Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физико-химические процессы в сжатом слое

Физико-химические процессы в сжатом слое  [c.30]

Все эти процессы упругопластического деформирования, молекулярного взаимодействия, тепловые, окислительные и вызываемые ими изменения физико-механических и химических свойств металлов в поверхностно-активном слое в конечном счете и определяют изнашивание трущихся поверхностей реальных деталей машин. Анализируя эти процессы, И. В. Крагельский обращает внимание на двойственную молекулярно-механическую их природу молекулярное взаимодействие обусловлено взаимным притяжением двух твердых тел, их адгезией механическое — взаи.м-ным внедрением элементов сжатых поверхностей. Он выделяет пять основных видов нарушения фрикционных связей, обусловливающих характер изнашивания (рис. 25). Упругое оттеснение материала / характеризуется отсутствием остаточных деформаций. Разрушение в зонах фактического касания и отделение частиц износа происходит лишь после многократного повторения нагружения. Пластическое оттеснение материала // характеризуется появлением остаточной (пластической) деформации. Число циклов нагружения, приводящее к разрушению основы, сравнительно мало (малоцикловая усталость). С увеличением нагрузки  [c.75]


Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]


При тепловой обработке стекла на границе стекло—расплав возникают три физико-химических процесса диффузия из расплава ионов лития в поверхностный слой образца (обмен их на ионы натрия в стекле) на глубину 80—100 мк повышение плотности упаковки ионов в поверхностном слое стекла и соответственно уменьшение коэффициента термического расширения по сравнению с глубинным стеклом, в результате чего при охлаждении образца в его поверхностном слое возникают напряжения сжатия растворение иоверхностного слоя кремнеземистого каркаса стекла на глубину 5—8 мк. В результате такой обработки образец стекла упрочняется в 2.5 раза. Таким образом, если образец исходного стекла имел прочность 6.5 кГ/мм , то образец, прошедший тепловую обработку при 560—580°, будет иметь прочность 14—16 кГ/мм , причем напряжение на поверхности ионообменного слоя достигнет значения 3.5—3.8 кГ/мм.  [c.166]

Процесс трения является сложной совокупностью взаимодействия многих факторов, при этом существенная роль принад- лежит процессу пластической деформации. Напряженное состоя нйе Яри трении объемно и неоднородно возникают качественно отличные нарушения правильности кристаллической решетки по сравнению с обычным растяжением или сжатием. Известно, что деформация слоев стали, близких к поверхности трения, при удельной нагрузке 1,5 МПа превышает 25% для достижения деформации такого же уровня для этого материала при статическом сжатии необходимо довести нагрузку до 600—700 МПа. Происходят значительные изменения поверхности трущихся монокристаллов в виде сильного изгиба кристаллической решетки, при этом ось изгиба находится в полной зависимости от направления скольжения. В работе [41 ] отмечено, что упрочнение поверхностных слоев, йвляющееся результатом пластической деформации, при трении достигает значительно больших величин, чем в условиях объемного напряженного состояния. При этом процесс пластического деформирования при трении рассматривают как физикохимический, т. е. процесс, сопровождающийся рядом структурных, физических и физико-химических изменений деформируемого металла.  [c.33]

Фрикционная связь, т. е. единичное пятно касания, образовавшееся при одновременном действии нормальных и касательных нагрузок, и комплекс процессов, протекающих в поверхностных слоях и микрообъемах, существенно зависят от ряда факторов геометрических, механических, физических и химических. Из них определяющими являются факторы геометрический, ха-рактезируемый отношением /г/г глубины внедревия или сжатия к радиусу единичной неровности, и физико-механический, харак-  [c.84]


Смотреть страницы где упоминается термин Физико-химические процессы в сжатом слое : [c.50]    [c.292]   
Смотреть главы в:

Тепловая защита  -> Физико-химические процессы в сжатом слое



ПОИСК



Процесс сжатия

Процесс химические

Сжатие слоя

Слой сжатый

Физико-химические процессы

Химическая физика



© 2025 Mash-xxl.info Реклама на сайте