Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вихревое течение. Основные теоремы

Вихревое течение. Основные теоремы  [c.143]

Основные теоремы вихревого течения  [c.92]

Рассмотренные теоремы определяют основные свойства вихревых движений идеальной жидкости. В вязкой жидкости эти движения являются преобладающими, и здесь мы сталкиваемся как с непрерывным распределением завихренности, так и с дискретными вихревыми трубками и вихревыми образованиями. Закономерности вихревого движения, установленные на основе модели идеальной жидкости, позволяют объяснить и многие особенности течения вязкой жидкости. Часто для этого достаточно использовать результаты решення задачи о движении жидкости в круговом вихревом цилиндре и в его окрестности.  [c.97]


Главное отличие движений, изучаемых классической гидромеханикой, от тех движений, которые являются объектом теории сжимаемой жидкости, заключается в характере изменения вихревых трубок, свойственном и тому, и другому движению, именно, — в сохраняемости их или несохраняемости с течением времени. Аналитически это различие находит отражение в том, что две основные теоремы Гельмгольца о вихрях, имеюгцие место для несжимаемой жидкости, в случае жидкости сжимаемой оказываются неприменимыми. Отсюда вытекает необходимость изучения законов разругаения вихревых трубок, а также изменения их напряжений, и этот вопрос А.А. Фридман разрабатывает в первой части своего труда Кинематика вихрей . Изучение изменения вихревых линий Фридман ведет при помогци так называемого основного триэдра и основного сферического треугольника. Рассматривая расположение вихревых и жидких линий в моменты t и t + At, он приходит к трем основным направлениям  [c.142]

Теорию крыла конечного размаха позволило создать использование основополагающей теоремы Н. Е. Жуковского о связи подъемной силы с циркуляцией и модели течения с присоединенным вихрем, так что эта теория является логическим продолжением и развитием идей, составляющих фундамент теории крыла бесконечного размаха, В 1910 г. С. А. Чаплыгин в докладе на тему Результаты теоретических исследований о, движении аэропланов сформулировал общие представления о вихревой системе крыла конечного размаха. В 1913 и 1914 гг. им были получены первые формулы для подъемной силы и индуктивного сопротивления. Они были доложены на третьем воздухоплавательном съезде в Петербурге. В дальнейшем основное распространение получила теория несущей линии, предложенная в Германии Л. Прандтлем для крыльев большого относительного удлинения. В рамках этой схемь было получено интегро-дифференциальное уравнение, связывающее изменение циркуляции и индуктивный скос потока. Задача свелась к отысканию различных приближенных методов его решения. В работе Б. Н. Юрьева (1926) был применен геометрический прием, в котором использовалось предположение о том, что распределение циркуляции близко к эллиптическому и что отклонения от этого распределения повторяют форму крыла в плане. Аналитические методы, применявшиеся на начальном этапе развития теории для получения приближенных решений, состояли в требовании удовлетворения основному уравнению в ограниченном числе точек по размаху. Так, в методе тригонометрических разложений В. В. Голубев (1931) заменил бесконечный тригонометрический ряд тригонометрическим многочленом, сведя бесконечную систему уравнений к конечной системе, в которой число неизвестных соответствует числу членов разложения циркуляции и числу точек на крыле. С целью более точного учета формы крыла в плане при ограниченном числе решаемых алгебраических уравнений Я. М. Серебрийский (1937) предложил для решения интегро-дифференциального уравнения использовать способ наименьших квадратов.  [c.92]


Используем общие определения параграфа 2 применительно к векторному соленоидальному полю завихренности и. Тогда из общих свойств векторных полей на основании теоремы Стокса (1.8) следует, что циркуляция Г по любому замкнутому стягиваемому контуру равна алгебраической сумме интенсивностей к всех вихревых трубок, пересекающих поверхность, ограниченную этим контуром. Это справедливо и в частном случае вихревых трубок бесконечно малого поперечного сечения — вихревых нитей. Обратим внимание на то, что понятие вихревая нить и вихревая линия отличны. Вихревая нить — это особая линия в распределении поля завихренности, полностью определяемая значением интенсивности к. В свою очередь — вихревая линия — это линия, касательная к которой в каждый момент времени совпадает с направлением мгновенной оси вращения жидких элементов. Применительно к описанию вихревого движения термины вихревые линии и нити ввел Г. Гельмгольц в (135). Он сформулировал основные свойства интегралов гидродинамических уравнений второго класса (так были названы течения, содержащие отличную от нуля завихренность в отличие от полностью потенциальных течений, весьма детально к тому времени изученных). Сформулированные в виде трех положений, эти свойства в дальнейшем названы законами или теоремами Гельмгольца для в 1хревого движения. Более столетия они встречаются в различных интерпретациях практически во всех учебниках по механике жидкости. Приведем эти законы в формулировках Г. Гельмгольца  [c.34]


Смотреть страницы где упоминается термин Вихревое течение. Основные теоремы : [c.151]    [c.41]   
Смотреть главы в:

Гидравлика и аэродинамика  -> Вихревое течение. Основные теоремы



ПОИСК



Вихревые усы

Основные теоремы

Теорема вихревое

Течение вихревое



© 2025 Mash-xxl.info Реклама на сайте