Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения относительного движения точ. 2.2. Частные случаи

Совокупность динамических и кинематических уравнений Эйлера является системой шести нелинейных дифференциальных уравнений первого порядка относительно ф, гр, 0 и сот,, со . При заданном моменте внешних сил М и известных начальных условиях определение движения тела сводится к указанной системе дифференциальных уравнений. В общем виде эта задача не решена. Однако несколько частных случаев движения тела около неподвижной точки всесторонне исследованы и уравнения их проинтегрированы. Среди них наиболее простой и широко применяемый в технике случай движения симметричного гироскопа, для которого А = В.  [c.180]


Можно прийти к весьма простому для рассмотрения предельному случаю названной задачи, если исходить вместо общей задачи трех тел из так называемой ограниченной задачи трех тел. Последняя есть частный случай плоской задачи трех тел, в которой масса точки Р3 равна пулю, а точки Рх, Р2 описывают окружности . Чтобы получить дифференциальные уравнения движения для точки Р3, введем в заданной плоскости вращающуюся систему осей с началом в центре инерции точек Р1 и Р2, так что точки Рх и Р2 относительно повой системы координат будут неподвижными. Без ограничения общности можно принять, что угловая скорость и = 1 в силу уравнений (12 5) для прямоугольных координат Х2к-1, Х2к точки Рк к = 1, 2, 3) во вращающейся системе координат получаются следующие дифференциальные уравнения  [c.168]

Проанализируем полученные результаты. Прежде всего следует отметить, что все характеризуюш ие поток величины не зависят от радиус-векторов г точек области течения относительно полюса О, т. е. от расстояния до вершины угла, а зависят лишь от полярного угла г. Мы здесь вновь встречаемся с особым случаем, когда уравнение в частных производных, описывающее плоское, йеужеркое движение, сводится к обыкновенному дифференциальному уравнению, т. е. уравнению с одной независимой переменной.  [c.245]

Тут возникает очень интересный вопрос, а именно заполняют ли движения, для которых ИтД = оо в одном или в обоих направлениях, многообразие Му всюду плотно или нет Весьма существенно понять, в чем состоит трудность, присущая этому вопросу. Прямым вычислением, без сомнения, можно всегда установить, принадлежит ли данное движение к одному из этих связных множеств или нет. Разумеется, для К малых почти все должно быть заполнено этими множествами, вследствие результатов, полученных нами для случая К 0. Тем не менее, если в Му имеется хотя бы одно периодическое движение устойчивого типа, невозможно определить, будут ли соседние движения принадлежать к этим множествам, не решая для этого частного случая основной проблемы устойчивости. Мы уже указывали (глава VIII) на чрезвычайную трудность проблемы устойчивости, возникающую как раз вследствие того, что в динамической проблеме, подобной проблеме трех тел, формальная устойчивость первого порядка обеспечивает удовлетворение бесконечного множества других, более тонких условий полной формальной устойчивости. Предыдущий вопрос, однако, может быть поставлен в другой, более наглядной форме, которая, по моему мнению делает весьма вероятным, что движения, для которых lim/ , = сю при limi = -Ьос, всюду плотны в Му. То же будет в таком случае справедливо и относительно движений, для которых lim Ti = 00 при lim t = -ос, так как, вследствие обратимости системы дифференциальных уравнений, оба предположения должны быть одновременно справедливы или одновременно ложны.  [c.286]



Смотреть страницы где упоминается термин Дифференциальные уравнения относительного движения точ. 2.2. Частные случаи : [c.315]   
Смотреть главы в:

Теоретическая механика  -> Дифференциальные уравнения относительного движения точ. 2.2. Частные случаи



ПОИСК



Движение в случае G2 ВТ

Движение дифференциальное

Движение относительное

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные уравнения относительного движения

К п частный

Относительность движения

Уравнения относительно го движения

Уравнения относительного движения

Частные случаи

Частные случаи движения

Частный случай



© 2025 Mash-xxl.info Реклама на сайте