Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Кельвина в теории удара

Из (3) можно получить теорему Кельвина для работы ударной силы за время удара. Непосредственно вычислить работу ударной силы за время удара трудно, так как ударные силы очень большие, а перемещения точек системы за время удара малы и ими пренебрегают. Теорема Кельвина позволяет выразить работу силы через импульс силы  [c.508]


Расширена динаг.иша твердого тела с одной закрепленной точкой. Наряду с приближенной теорией гироскопа дополнительно изложена точная теория гироскопического момента при регулярной прецессии. В спецЕтальных главах изложены также элементы теории искусственных спутников и даны основные сведения по движению точки переменной Еиассы. В теорию удара вклЕочена редко излагаемая в учебниках теорема Кельвина, иа основе которой затем доказываются теоремы Карно.  [c.3]

В дальнейшем пользуемся упрощенной моделью, в которой предполагается, что взаимодействие тела с преградой происходит в течение всего времени пребывания тела в области л >0. Ясно, что это время больше значения t из предыдущей задачи, и для моментов времени t>f получаем физически абсурдную картину стенка удерживает тело т, когда оно двил<ется от стенки в отрицательном направлении. Таким образом, вторая модель не претендует на физическое обоснование теории удара. Однако (какпоказано ниже) в результате некоторого предельного перехода она также приводит к модели удара с трением, изложенной во введении, а простота получающихся при этом формул позволяет развить эффективный метод решения ряда задач устойчивости движения в системах с неудерживающими связями (см. гл. 3). Идея метода состоит в следующем односторонние связи заменяются средой Кельвина — Фойгта, и в решениях полученных уравнений движения совершается предельный переход, при котором коэффициенты упругости и диссипации некоторым согласованным образом устремляются к бесконечности. В пределе получается движение системы с неупругим ударом, причем характеристики среды Кельвина —Фойгта определяются по заданному с самого начала коэффициенту восстановления. Такой подход позволяет при решении задач о движении систем с ударами использовать обычные дифференциальные уравнения динамики с дополнительными силами определенного вида. Основным результатом здесь являются теоремы  [c.41]


Смотреть страницы где упоминается термин Теорема Кельвина в теории удара : [c.527]    [c.29]   
Аналитическая динамика (1971) -- [ c.253 ]



ПОИСК



Кельвин

Теорема Кельвина

Теория удара



© 2025 Mash-xxl.info Реклама на сайте