Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ньютонов эллипсоида потенциалы

Чтобы подойти ближе к отношению, которое имеет место для Земли, вычислим форму равновесия жидкой массы, вращающейся вокруг оси г нашей системы координат с угловой скоростью ш, частицы которой притягиваются между собой по закону Ньютона. Но эту задачу мы можем решить, и то не вполне, предполагая жидкость однородной и несжимаемой. Если т лежит между известными границами, то, как показывает вычисление, формой равновесия жидкости является эллипсоид. Считая, что жидкость ограничена эллипсоидом, можно определить его оси. Решение этой задачи много труднее, чем предыдущей, потому что здесь потенциал действующих сил не задан прямо, но зависит от искомой формы жидкости.  [c.112]


Теперь займемся установившимся движением несжимаемой жидкости при котором, кроме силы тяжести, действуют другие силы и нет потенциала скоростей. Мы будем говорить о жидкости, частицы которой притягиваются между собой по закону Ньютона и на поверхность которой действует постоянное давление. Мы докажем, исходя из эйлеровых уравнений гидродинамики, что эта жидкость может иметь некоторое установившееся движение, в то время как поверхность ее будет трехосным эллипсоидом, между осями которого существует некоторое определенное соотношение. Для этого предположим, что между компонентами скорости и, о, т координатами х, у, г точки.  [c.289]

Это — объемный (ньютонов) потенциал эллипсоида  [c.908]

Конечно, Герц не имел, как имели мы здесь, уже готового предположения о распределении давления по поверхности плитки, при знании которого ему оставалось бы только доказать правильность решения. Он по этому вопросу не делал никаких предварительных предположений и нашел закон распределения давлений лишь в результате своих исследований. Герц пришел к своему результату, опираясь на то, что решение основных уравнений упругого равновесия может быть получено при помощи теории потенциала притягивающих или отталкивающих масс. Если представить себе, что между обоими телами помещен трехосный эллипсоид равномерной плотности, у которого ось, идущая в направлении нормали касательной плоскости, в сравнении с осями, расположенными в площадке сжатия, бесконечно мала, то для сил притяжения масс этого эллипсоида, подчиняющихся закону тяготения Ньютона, можно вычислить потенциал в виде функции от координат ауфпункта ) и для такого потенциала уже давно была выведена готовая формула. Как можно показать, не только сами составляющие сил притяжения, вычисляемые по соответствующим формулам, но и функции, получаемые из них путем диференцирования или интегрирования по координатам, будут представлять решения основных уравнений теории упругости, и вся задача заключается лишь в том, чтобы составить из них такое решение, которое удовлетворяло бы одновременно всем граничным условиям, относящимся к напряжениям и деформациям. Это и удалось сделать Герцу. Кто захотел бы ознакомиться с теорией сжатия упругих тел по оригинальным работам Герца, тот должен иметь соответствующие предварительные сведения из теории потенциала.  [c.230]


Смотреть страницы где упоминается термин Ньютонов эллипсоида потенциалы : [c.908]    [c.151]   
Линейная механика разрушения Издание 2 (2004) -- [ c.0 ]



ПОИСК



Ньютон

Ньютонов эллипсоида

Потенциал ньютонов

Потенциал эллипсоида

Эллипсоид



© 2025 Mash-xxl.info Реклама на сайте