Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инвариант последовательных преобразований

Следовательно, П1У 11 11 есть инвариант последовательных преобразований. Этот результат играет важную роль в геометрической теории построения изображения. Если положить tg у (см. рис. 4.17), то (48) примет вид  [c.164]

Важное предположение, которое мы сделали, состоит в том, что соотношения (8.102) или (8.103), определяющие рп, являются относительными инвариантами преобразования w- tw=w в том смысле, что последовательность рп не меняется при сдвигах /. Это означает, что  [c.182]


Решение этого уравнения дает три вещественных корня оц Ог, Оз (при этом 01>а2>(Тз)- Эти три напряжения называются главными. Внося последовательно эти корни в уравнения (1.4) и присоединив к ним уравнение (1.5), находят величины направляющих косинусов для каждого главного напряжения. Определив напрявляющие косинусы, можно заключить, что главные площадки, соответствующие значениям главных напряжений о, 02, Оз, являются взаимно перпендикулярными. Значения главных напряжений не могут зависеть от направления осей координат, поэтому коэффициенты уравнения (1.4) Яь аг, аз должны сохранить свои величины при любом выборе осей координат. Многочлены, образующие эти коэффициенты, называют инвариантами преобразования координат.  [c.10]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]

Для простоты изложения все методы рассматриваются лишь в первом порядке по е, а канонические преобразования выполняются с помощью зависящей от смешанного набора переменных производящей функции. Эти методы можно перенести и на более высокие порядки [34], но последовательное распутывание старых и новых переменных становится алгебраически сложным, а соответствующие ряды оказываются громоздкими. Однако высшие приближения часто необходимы, как, например, в задаче Хенона и Хейлеса, где первый порядок теории возмущений дает неверный результат даже в предельном случае очень низкой энергии. В 2.5 мы знакомим читателя с теорией преобразований Ли, которая пришла на смену старым способам получения классических рядов в высоких порядках по 8. Методы Ли иллюстрируются на примерах задач с одной степенью свободы и вычисления адиабатических инвариантов высших порядков.  [c.84]



Смотреть страницы где упоминается термин Инвариант последовательных преобразований : [c.276]    [c.42]    [c.527]   
Основы оптики Изд.2 (1973) -- [ c.164 ]



ПОИСК



Инвариант

Последовательность

Последовательность Последовательность

Последовательные преобразования



© 2025 Mash-xxl.info Реклама на сайте