Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоемкость воздуха, газов

Св, Сг, Св.п — соответственно средние изобарные объемные теплоемкости воздуха, газов и водяных паров  [c.125]

Св, Сг, Св.п — соответственно средние изобарные объемные теплоемкости воздуха, газов и водяных паров /в и — соответственно температуры воздуха я продуктов горения, °С.  [c.113]

Ср — теплоемкость воздуха (газа) при постоянном давлении.  [c.10]

Здесь t — температура, °С, с г — средняя в диапазоне температур О — / °С теплоемкость продуктов сгорания при постоянном давлении, отнесенная к единице их объема в нормальных условиях, Дж/(м -К). Энтальпия Hr измеряется в Дж/кг или Дж/м . Удельная (отнесенная к 1 в нормальных условиях) теплоемкость дымовых газов чуть больше, чем воздуха, поскольку вместо двухатомного кислорода в них появляются более теплоемкие трехатомные Oj и НаО, однако разница не превышает 5—10%. Как и у всех газов, теплоемкость продуктов сгорания заметно возрастает с температурой. Для более точных расчетов ее можно найти по составу смеси газов  [c.128]


Пример 8-1. В регенеративном теплообменнике воздух нагревается за счет отходящих газов, выходящих из газовой турбины. Воздух нагревается от температуры ti = 30° С до температуры = = 250° С отходящие газы охлаждаются от = 400° С до /4 = = 150° С. Определить потерю работоспособности установки на 1 кг проходящего в ней газа. Газ считать идеальным, обладающим свойством воздуха, а теплоемкость воздуха и газа принять величинами постоянными. Температура окружающей среды 20° С. Теплообменник потерь не имеет.  [c.136]

При очень больших скоростях потока и при высоких температурах в аэродинамике имеют дело со смесью газов. Например, воздух при температурах до 500 К остается совершенным двухатомным газом, имеющим постоянный молекулярный вес т fn 29 и показатель адиабаты у = 1,405. При дальнейшем росте температуры увеличивается теплоемкость воздуха, что объясняется возбуждением внутренних степеней свободы в молекулах воздуха. Затем с ростом температуры происходит диссоциация воздуха (молекулы распадаются на атомы) при температурах свыше 2000 К распадается молекулярный кислород, при 4000 К и выше существенным становится разложение азота. В диапазоне температур 7000... 10 ООО К начинается процесс ионизации атомов с образованием свободных электронов. Указанные процессы являются весьма энергоемкими, и это обстоятельство необходимо учитывать при расчете течений. Если скорость химических превращений в газовой смеси велика по сравнению со скоростями газодинамических процессов, то смесь находится в химическом равновесии. В этом случае, как уже отмечалось, вместо уравнений переноса i-то компонента следует рассматривать законы действующих масс в виде (1.26).  [c.29]

В формуле (7.28) можно также пренебречь изменением температуры воздуха за счет дросселирования, так как при атмосферном давлении воздух по своим свойствам близок к идеальному газу, для которого дроссель-эффект равен нулю. Следовательно, при вычислении средней удельной теплоемкости воздуха при постоянном давлении можно использовать зависимость  [c.75]

Задача 2.9. В топке котла сжигается малосернистый мазут состава С = 84,65% Н =11,7% 8 = 0,3% 0 = 0,3% = 0,05% W = 3,0%. Определить в кДж/кг и процентах потери теплоты с уходящими газами из котлоагрегата, если известны коэффициент избытка воздуха за котлоагрегатом Оух=1,35, температура уходящих газов на выходе из последнего газохода 0yi=16O° , температура воздуха в котельной /, = 30°С, средняя объемная теплоемкость воздуха при постоянном давлении Сл,= = 1,297 кДж/(м К) и температура подогрева мазута /т = 90°С.  [c.39]


Задача 2.12. Определить, на сколько процентов возрастут потери теплоты с уходящими газами из котельного агрегата при повышении температуры уходящих газов ву, со 160 до 180°С, если известны коэффициент избытка воздуха за котлоагрегатом Оу,= 1,48, объем уходящих газов на выходе из последнего газохода Vy = 4,6 м /кг, средняя объемная теплоемкость газов при постоянном давлении Сру = 1,415 кДж/(м К), теоретический объем воздуха, необходимый для сгорания 1 кг топлива V° = 2,5 м /кг, температура воздуха в котельной /, = 30°С, средняя объемная теплоемкость воздуха при постоянном давлении Ср,= = 1,297 кДж/(м К) и потери теплоты от механической неполноты сгорания топлива 4 = 340 кДж/кг. Котельный агрегат работает на фрезерном торфе с низшей теплотой сгорания (2S=8500 кДж/кг.  [c.41]

Рост теплоемкости при увеличении температуры газа происходит сравнительно медленно. Так, например, изобарная теплоемкость воздуха при изменении температуры от О до 100° С возрастает всего на 0,6%, но при изменении температуры от О до 2000°С увеличивается на 27%. Поэтому, когда температура газа увеличивается или уменьшается незначительно (примерно на 100... 200°С), вполне возможно и целесообразно принять значение теплоемкости постоянным. При значительном изменении температуры газа в процессах, происходящих в двигателях внутреннего сгорания и газовых турбинах, а также при охлаждении продуктов сгорания топлива в газоходах котла необходимо считать теплоемкость зависящей от температуры.  [c.60]

Приняв теплоемкости постоянными, пренебрегая различием в значениях теплоемкостей воздуха и газа и различием их массовых расходов, получаем следующую приближенную зависимость  [c.185]

Степень использования уходящей теплоты в цикле характеризуется коэффициентом регенерации. Степенью (коэффициентом) регенерации г называется отношение теплоты, полученной воздухом в регенераторе, к тон максимальной теплоте, которую он мог бы получить, будучи нагретым до температуры газов, выходящих из турбины. Считая теплоемкости воздуха и газа одинаковыми, можем записать формулу для г в виде  [c.188]

Теплоемкость воздуха можно принимать из таблиц в зависимости от температуры или рассчитывать по приближенным зависимостям, составленным на базе этих таблиц. Теплоемкость продуктов сгорания зависит кроме температуры от состава газа и может быть определена по формулам для газовых смесей.  [c.197]

Средние значения энтальпии продуктов полного сгорания топлива, влажного воздуха н теплоемкости горючих газов и золы твердых топлив приведены в табл. 2-3 и 2-4.  [c.54]

Значения средних мольных изобарных теплоемкостей некоторых газов и сухого воздуха в интервале температур от О до 2500° С даны в труде [1 ].  [c.135]

Кроме изобарной теплоемкости Ср, необходимо рассчитать и среднюю изохорную теплоемкость воздуха с . Так как в данном случае воздух по своим свойствам весьма близок к идеальному газу, то связь между теплоемкостями выражается формулой Майера  [c.225]

Принимая теплоемкость воздуха и газа одинаковыми и постоянными, можем написать  [c.170]

При повышении температуры газов весовая теплоемкость их повышается. Так, например, теплоемкость воздуха в пределах от 0 до 100° С составляет 0,24 ккал, от 100 до 400°С — 0,25 ккал, от 500 до 700° С-— 0,26 ккал, от 800 до 1 100° С — 0,27 ккал.  [c.14]

Действительно, если рассматриваемый газ, так же как и воздух, является двухатомным, то во-первых, он достаточно строго подчиняется законам идеальных газов и, во-вторых, можно пренебречь отклонением его мольной теплоемкости от мольной теплоемкости воздуха. При этом масштабы энтальпии и энтропии и числовые значения объемов и паросодержаний, приведенные на диаграмме, изменяются в одно и то же число раз. Чтобы получить значения этих параметров (отмечаемые штрихом) следует значения, приведенные на диаграмме, умножить на отношение молекулярных весов воздуха и рассматриваемого газа. Можно, следовательно, записать  [c.132]


Энтропия, в дальнейших рассуждениях полагаем, что мольные теплоемкости всех двухатомных газов при температурах до 100—120° С равны мольной теплоемкости воздуха.  [c.133]

При этом связь между удельной изобарной теплоемкостью какого-либо двухатомного газа и теплоемкостью воздуха выражается очевидной зависимостью  [c.133]

Пример 8-2. Воздух в противоточиом теплообменнике нагревается от температуры Л = 40° С, а газы охлаждаются от температуры 3 = 450° С до температуры = 200° С. Тепловые потери теплообменника составляют 20% от теплоты, отдаваемой газом. Определить потерю работоспособности на 1 кг проходящего газа вследствие необратимого теплообмена. Газ и воздух считать идеальными газами, обладающими свойствами воздуха. Теплоемкость воздуха и газов считать величинами постоянными. Температура окружающей среды равна 0 = 25° С.  [c.137]

Идеальный одноступенчатый компрессор, объеу1-ная подача которого V — 150 м /ч, сжимает воздух от давления Pi = 0,1 МПа до давления — 0,4 МПа. Как изменится теоретическая мощность двигателя для привода компрессора, если его использовать для сжатия углекислого газа, сохранив прежнюю объемную подачу. В обоих случаях процесс сжатия адиабатный, начальная температура = = 20 °С. Изохорная теплоемкость углекислого газа = = 0,94 кДж/(кг-К).  [c.115]

Задача 2.11. В топке котельного агрегата сжигается каменный уголь с низшей теплотой сгорания Ql = 21 600 кДж/кг. Определить потери теплоты в процентах с уходящими газами из котлоагрегата, если известны коэффициент избытка воздуха за котлоагрегатом Oyj=l,4, объем уходящих газов на выходе из последнего газохода Ку =10,5 м /кг, температура уходящих газов на выходе из последнего газохода 0ух= 160°С, средняя объемная теплоемкость газов при p = onst 1,415 кДж/(м К), теоретический объем воздуха, необходимый для сгорания 1 кг топлива F° = 7,2 м /кг, температура воздуха в котельной /> = 30 С, температура воздуха, поступающего в топку, С = 180°С, коэффициент избытка воздуха в топке се = 1,2, средняя объемная теплоемкость воздуха при постоянном давлении = = 1,297 кДж/(м К) и потери теплоты от механической неполноты сгорания топлива q = A%.  [c.41]

Задача 2.13. Определить в процентах потери теплоты с ухо-дящиуш газами из котельного агрегата, если известны коэффициент избытка воздуха за котлоагрегатом Oyi=l,5, температура уходящих газов на выходе из последнего газохода 0yi=15O° , температура воздуха в котельной Г, = 30 С, средняя объемная теплоемкость воздуха при постоянном давлении = = 1,297 кДж/(м К), температура топлива при входе в топку tj = = 20°С и потери теплоты от механической неполноты сгорания топлива 4 = 3,5%. Котельный агрегат работает на абанском угле  [c.41]

Задача 2.38. Определить полезное тепловыделение в топке котельного агрегата, работающего на подмосковном угле марки Б2 состава С = 28,7% tf = 2,2% SS==2,7% N = 0,6% 0 = 8,6% А = 25,2% И = 32,0%, если известны температура топлива на входе в топку tj = 20° , температура воздуха в котельной в=30°С, температура горячего воздуха /, =300°С, коэффициент избытка воздуха в топке atr= 1,3, присос воздуха в топочной камере Aoj = 0,05, потери теплоты от химической неполноты сгорания топлива дз — 0,5%, потери теплоты от механической неполноты сгорания топлива д = Ъ%, объем рециркулирующих газов Грц=1,1 м /кг, температура рециркулирующих газов 0рц=1ООО°С и средняя объемная теплоемкость рециркулирующих газов с рд= 1,415 кДж/(м К).  [c.55]

Здесь Срв— теплоемкость воздуха при средней температуре между газами перед газоводяным подогревателем и наружным воздухом Грв— то же при средней температуре газов перед и после этого подогревателя ц — приращение энтальпии при нагреве от температуры питательной воды (после регенеративного подогревателя высокого давления), испарении и перегреве пара в основном и промежуточном перегревателях.  [c.184]

Значения средней теплоемкости воздуха и газов от О до t° , Ср ккал1нм °С (по данным ВТИ)  [c.41]

Таблии,а 18а [Л. 16] Средние теплоемкости воздуха и газов от О до f С, ккал/нм -град  [c.342]


Смотреть страницы где упоминается термин Теплоемкость воздуха, газов : [c.130]    [c.196]    [c.105]    [c.36]    [c.109]    [c.284]    [c.38]    [c.111]    [c.38]    [c.136]    [c.184]    [c.185]    [c.270]    [c.133]    [c.44]    [c.106]    [c.39]    [c.393]    [c.180]    [c.135]   
Котельные установки и тепловые сети Третье издание, переработанное и дополненное (1986) -- [ c.33 ]



ПОИСК



Воздух Теплоемкость

Воздух отношение теплоемкостей газа

Воздух теплоемкость газа

Воздух теплоемкость газа

Средние теплоемкости воздуха и газов от 0 до

Таблица П-7. Удельная теплоемкость ср воздуха и некоторых других газов

Теплоемкости воздуха, его смеси с остаточными газами и продуктами сгорапия

Теплоемкость газа

Теплоемкость газов



© 2025 Mash-xxl.info Реклама на сайте