Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан и его сплавы электрошлаковой

Сварку толстых деталей (до 40 мм) из титана и его сплавов осуществляют методом электрошлаковой сварки электродом толщиной 3—4 мм с использованием переменного тока. Место сварки и прилегающие зоны основного металла необходимо тщательно защищать от воздействия азота, водорода и кислорода, так как титан обладает большой химической активностью к этим элементам и восстанавливает окислы. При температурах выше 600°С титан интенсивно поглощает газы.  [c.343]


Чтобы избежать потери таких легкоокисляющихся элементов, как алюминий, титан, цирконий и др., которые вводятся в аустенитные стали и сплавы для придания им особых свойств, при электрошлаковой сварке этих сталей и сплавов необходимо применять бескислородные флюсы АНФ-1, АНФ-7 и др.  [c.295]

Из других металлов, которые также применяются в конструкциях, изготовляемых с помощью электрошлаковой сварки, можно отметить прежде всего титан и его сплавы. Как известно, титан и его сплавы обладают высокой прочностью, малым удельным весом и хорошо сопротивляются коррозии в окислительных средах. Поэтому они с каждым годом все шире применяются в различных от-  [c.303]

Технология электрошлаковой сварки титана отличается от технологии сварки сталей. Обусловлено это тем, что титан обладает такими физико-химическими свойствами, которые затрудняют его сварку. Титан в условиях повышенных температур, особенно в расплавленном состоянии, весьма активен по отношению к кислороду, азоту и водороду. При температуре выше 600° С указанные элементы поглощаются титаном из воздуха, а в расплаве восстанавливаются из различных химических соединений. Попадание в титан или его сплав даже небольших количеств кислорода, азота или водорода резко ухудшает его пластические свойства и вязкость. Поэтому при сварке титана необходимо применять специ-  [c.303]

Титан и его сплавы можно сваривать дуговой в защитных газах, автоматической под слоем флюса и электрошлаковой сваркой. В последнее время применяется сварка электронно-лучевая и сжатой дугой.  [c.417]

Технический титан и его сплавы сваривают автоматической сваркой в среде инертных газов, под флюсом и электрошлаковой сваркой.  [c.205]

На величину длительной пластичности стали или сплава могут оказать влияние характер легирования и большое число различных факторов. Так, введение в аустенитную сталь или сплав молибдена смещает зону низкой деформационной способности в область температур, лежащих выше рабочих (на 100—150° С). Поэтому, например, сталь 1Х16Н13М2Б (ЭИ680) более пластична при рабочих температурах 550—650° С, чем сталь Х18Н10Т. Введение же таких энергичных карбидообразующих элементов как титан, ниобий и ванадий, заметно повышая длительную прочность, одновременно приводит к падению пластичности в рабочем интервале температур. Для аустенитных сталей и сплавов на никелевой основе, легированных титаном, ниобием и алюминием, существенное повышение длительной пластичности обеспечивается обычно при введении в металлургическую технологию операций электрошлакового, вакуумнодугового или плазменного переплавов 163].  [c.26]


Реакция серы и фосфора. Оба эти элемента крайне вредны для аустенитных швов, особенно фосфор. Чтобы предотвратить горячие трещины в стабильноаустенитных швах, приходится ограничивать содержание фосфора до 0,01 %. Удаление его из сварочной ванны путем окисления в принципе возможно, но в практике сварки аустенитных сталей не реализуется, так как фосфор обладает сравнительно малым сродством к кислороду. Чтобы окислить фосфор, пришлось бы сначала окислить такие легирующие элементы, как алюминий и титан. Данные об окислении фосфора при сварке под флюсом и электрошлаковой сварке приведены в табл. 17. В этих условиях одной из главных задач металлургии сварки жаропрочных сталей и сплавов является не удаление фосфора из сварочной ванны, а недопущение дополнительного загрязнения ее фосфором. Речь идет о возможном восстановлении  [c.72]

Качество сварных соединений в значительной степени определяется надежностью защиты сварочной ванны и максимально разогретой зоны от воздействия окружающей среды, а также отсутствием в шве нор, шлаковых включений и других дефектов. Обеспечение указанных условий получения качественных соединений также связано с выбором способа сваркп. Наиболее эффективны в этом отношении сварка в атмосфере защитных газов и вакууме. Особенно важно правильно выбрать способ сварки при применении материалов, свойства которых ухудшаются при незначительном насыщении газами из окружающего воздуха. Например, для таких тугоплавких металлов, как титан, ниобий, а также для алюминия, магния и высоколегированных сталей предпочтительна дуговая сварка в атмосфере аргона высокой чистоты, а для молибдена и его сплавов — электронным лучом в вакууме. В то же время углеродистые и легированные конструкционные стали успешно сваривают всеми способами дуговой и электрошлаковой сварки. При соответствующем выборе режима и сварочных материалов получают сварные соединения, равнопрочные основному металлу при статических и динамических нагрузках.  [c.377]

Технический титан и однофазные а-спла-вы титана (ОТ4, ВТ5, ВТ5-1, АТЗ и др.) хорошо свариваются электрошлаковым способом и после сварки не требуют термообработки сварных соединений. В табл. 4.21 представлены механические свойства сварных соединений из сплава ВТ 1-0, выполненные с применением плавящегося мундщтука и проволоки из сплава ВТ1-00.  [c.154]

Для сварки титана и его сплавов применяют дуговую сварку в среде инерт1 ых газов, электронно-лучевую, пла31менную, погруженной дугой, автоматическую под флюсом, электрошлаковую, высокочастотную, контактную (точечную, шовную, рельефную, стыковую), диффузионную, взрывом, прокаткой биметаллов Титан и его сплавы не склонны к образованию кристаллизационных трещин в металле шва. Стойкость к образованию кристаллизационных трещин швов на титановых сйлавах высокая  [c.34]


Смотреть страницы где упоминается термин Титан и его сплавы электрошлаковой : [c.115]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.662 , c.664 ]



ПОИСК



Титан

Титан и его сплавы

Титан и сплавы титана

Титанит

Титания

Электрошлаковая (-ый)



© 2025 Mash-xxl.info Реклама на сайте