Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критический тепловой поток, формула Но-йса

Наиболее сложные законы тепло- и массообмена наблюдаются при дисперсно-кольцевой структуре двухфазного потока. В этом случае коэффициент теплоотдачи определяется действительной скоростью жидкости, текущей в пленке, и характером волнообразования на ее поверхности. Следовательно, знание параметров пленки является необходимым условием для создания обоснованных методов расчета интенсивности теплообмена в условиях дисперснокольцевого режима течения парожидкостной смеси. Эти знания являются также ключом к пониманию физического механизма возникновения кризисов теплообмена при кипении в трубах и позволяют получить рациональные формулы для расчета плотностей критических тепловых потоков или граничных паросодержаний, превышение которых ведет к резкому ухудшению теплоотдачи.  [c.231]


Другой метод [1721 псследования свойств течения ненасыхценных пленок гелия основывается на измерении количества тепла, нереносимого ча- TH JHO пленкой и частично газом. Использованный для этого прибор показан на фпг. 95. Температура донышка теплоизолированной трубки поддерживается постоянной к се верхнему концу прикрепляется нагреватель и термометр. При заполнении трубки газом под давлением, не достигающим насыщающего, внутренние стенки трубки покрываются ненасыщенной пленкой, соответствующей данному давлению. При нагреве часть пленки сверху испаряется и пары гелия возвращаются па дно сосуда таким образом, внутри трубки устанавливается конвективный ноток. Когда скорость этого потока достигает своего критического значения, т. е. пленка испаряется полностью, температура верхнего конца трубки резко повышается. Критическая скорость переноса но ненасыщенной пленке определяется затем формулой  [c.870]

Таким образом, допущение, сделанное выше, относительно изоэнт-ропного характера изменения параметров в звуковой волне (dq = 0 ds = 0), t.e. о замороженности процессов тепло- и массообмена в такой волне, подтверждается экспериментально. Это не только оправдывает возможность использования формулы (8.20), которая определяет показатель адиабаты в предположении о наличии обмена между фазами только количеством движения, но и позволяет утверждать, что критический режим истечения вскипающей воды устанавливается тогда, когда скорость потока становится равна такой скорости, звука, которая определяется из условия обмена в звуковой волне только количеством движения.  [c.174]

Критическое значение этой величины впервые было вычислено Джеффри . Правильность вычислений Джеффри была затем подтверждена работами Лоу и Авсека . Для твердых стенок, хорошо проводящих тепло и снизу и сверху, это критическое значение равно приблизительно 1705. Шмидт и Сондерс , производившие опыты с водой при средней температуре от 18 до 20°, откладывали измеренные значения в функции от мощности электрического тока, нагревавшего стенку, и обнаружили, что полученные кривые имеют один четко выраженный перелом при А, равном от 1700 до 1800, и второй перелом приблизительно при Л = 47000 (переход к турбулентному потоку). Далее они нашли, что при значениях Л от 47000 до 150 000 (наибольшее значение А, которого они достигли в своих опытах), теплоотдача определяется формулой  [c.557]

При помощи ударной трубы возможно создание высокотемпературных потоков газа в широком диапазоне плотностей. Несмотря на кратковременность процесса, быстродействующая аппаратура дает возможность проводить тепловые замеры. Более того, кратковременность действия потока имеет даже определенные преимущества, так как с высокой точностью позволяет считать процесс передачи тепла стенкам одномерным. Результаты многих работ [1—4], в которых изучалось развитие пограничного слоя и теплообмен на стенке ударной трубы с помощью тонкопленочных термометров сопротивления, показали, что температура поверхности стенки трубы может быть измерена очень точно. Поэтому в настоящее время появилось два метода измерения коэффициентов переноса, в основе которых лежат результаты измерений теплопередачи к стенкам ударной трубы. Впервые численное решение задачи теплообмена было получено в работе [5] и экспериментально проверено в работе 61, в которой авторы измерили теплообмен в критической точке тупоносого тела, помещенного в ударную трубу. Результаты работы 6] в основном подтвердили теорию, изложенную в работе [5], но при этом обнаружилось, что теплообмен в сильной степени зависит от числа Ье (числа Люиса) и вязкости газа поэтому получить данные о коэффициенте вязкости высокотемпературного газа в невоз-ыущенном потоке было практически невозможно. Авторы работы [7] используя теорию, предложенную в работе [5], а также результаты работы [8], дающей теоретический анализ ламинарного пограничного слоя на стенке ударной трубы, показали, что тепловой поток на боковой стенке очень слабо зависит от числа Люиса. Поэтому в соотнощении для теплообмена единственной неизвестной можно считать коэффициент вязкости в невозмущенном потоке. Это позволило им, используя данные по определению теплового потока к стенкам ударной трубы, при сравнении с численными решениями уравнений пограничного слоя на стенках получить экспериментальные результаты по определению коэффициента вязкости диссоциированного кислорода. Оценивая результаты эксперимента, они пришли к выводу, что на теплообмен к боковой стенке очень слабо влияет фитерий Прандтля, число Люиса, а лучистый тепловой поток в диапазоне температур 2000—4000° К еще пренебрежимо мал. Погрешность экспериментальных данных о вязкости, полученных по этой методике, оценивается авторами в пределах 16%- Сравнение полученных опытных данных с данными, рассчитанными по формуле  [c.217]



Смотреть страницы где упоминается термин Критический тепловой поток, формула Но-йса : [c.158]    [c.215]    [c.109]    [c.245]   
Теплопередача при низких температурах (1977) -- [ c.17 , c.163 , c.170 ]



ПОИСК



Критический тепловой поток

Критический тепловой поток, формула Но-йса Розенова и Гриффитс

Критический тепловой поток, формула Но-йса Фредеркинга

Критический тепловой поток, формула Но-йса формулы Макбета

Поток тепла

Тепловой поток



© 2025 Mash-xxl.info Реклама на сайте