Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дарси (гидравлического трения шероховатых

Коэффициент гидравлического трения X в формулах Дарси легко определяется опытным путем. Для этого достаточно измерить разность пьезометрических отметок (для газов — разность давлений) в двух сечениях испытываемого трубопровода и среднюю скорость течения. В результате обобщения огромного экспериментального материала удалось установить, что Я в конечном итоге является функцией двух безразмерных параметров числа Рейнольдса Re, учитывающего влияние скорости и вязкости жидкости, а также размеры самого трубопровода, и относительной шероховатости где k — линейная величина, характеризующая влияние стенок. Таким образом,  [c.157]


Шероховатость поверхности трубы характеризуется средней высотой бугорков к (абсолютная шероховатость), дисперсией и другими статистиками, которые описывают форму шероховатой поверхности. Простейшим видом шероховатости является так называемая равномерно-зернистая шероховатость, представляющая собой совокупность шаров одинакового размера с плотной упаковкой. Для этого вида шероховатости величина дисперсии равна нулю и размер зерна к, является единственным количественным критерием. Очевидно, если к 5 , то величина шероховатости не должна влиять на профиль скорости, величину турбулентного касательного напряжения и, следовательно, коэффициент гидравлического трения к (коэффициент Дарси) должен в этом случае зависеть только от числа Re. Трубы, в которых к 8 ,. называются гидравлически гладкими трубами. В другом предельном случае к 8 , вязкий подслой разрушается, и турбулентность определяется только шероховатостью. Этот режим носит название автомодельного по числу Re, или зоной квадратичного сопротивления, так как коэффициент Дарси при изменении числа Re остаётся постоянным. В промежуточной зоне коэффициент гидравлического трения X должен зависеть и от числа Re,и от параметров шероховатости. Первые планомерные опыты по исследованию турбулентного движения в трубах были проведены по инициативе Л.Прандтля И.И.Никурадзе с искусственной шероховатостью, близкой к равномерно-зернистой, так как величина относительного квадратичного отклонения для этих труб лежала в диапазоне 0,23-0,30. Обычные трубы, применяемые в машиностроении, называются техническими и имеют относительное квадратичное отклонение порядка 1,5.  [c.87]

Экспериментами установлено, что коэффициент гидравлического трения к в формуле Дарси — Вейсбаха, а соответственно и потери напора по длине зависят от числа Рейнольдса и от относительной шероховатости. Это вытекает и из теоретических исследований. Поэтому усилия как советских, так и зарубежных ученых были направлены на выявление характера этой зависимости. Было установлено, что при больших числах Рейнольдса и высокой шероховатости коэффициент гидравлического трения "к в трубах совсем не зависит от вязкости жидкости (числа Рейнольдса), а зависит только от относительной шероховатости (в этих условиях трубы и русла называют вполне шероховатыми). Трубы же, в которых коэффициент К зависит только от числа Рейнольдса и не зависит от относительное шероховатости, что бывает при сравнительно малых Re и kid, называют гидравлически гладкими. При этом один и тот же трубопровод в одних условиях может быть гидравлически гладким, а в других — вполне шероховатым. Условия, в которых А. зависит и от числа Рейнольдса йот относительной шероховатости, называются переходной областью. Это объясняется тем, что при малых числах Рейнольдса вблизи стенок сохраняется сравнительно толстый ламинарный слой, и выступы шероховатости обтекаются н<идкостью без образования и отрыва вихрей. Свойства поверхности стенок трубопровода в этом случае не влияют на сопротивление и зависимость К = f (Re) выражается в логарифмических координатах прямой (см. рис. V. 6).  [c.91]


Влияние режима и степени шероховатости заключено в коэффициенте гидравлического трения (коэффициенте Дарси).  [c.95]

Коэффициент сопротивления трения Я,т, или коэффициент Дарси при турбулентном режиме, в общем случае зависит от числа Рейнольдса Re и относительной шероховатости Д/d. Если для так называемых гидравлически гладких труб шероховатость на сопротивление не влияет, то коэффициент Ят однозначно определяется числом Re. Наиболее употребительной для этого случая является формула Блазиуса  [c.69]

Выражение (22.18) называется формулой Дарси—Вейсбаха. Она справедлива и при турбулентном режиме движения. Однако коэффициент гидравлического трения X в этом режиме зависит не столько от Re, сколько от неровностей поверхности труб шероховатости). Определение значений коэс[)фици-епта X в режиме турбулентного движенпя — довольно сложная задача, в настоящее время его находят по эмпирическим формулам н графикам. При турбулентном режиме иульсацни скоростей и процесс перемешивания частиц жидкости вызывают дополнительные расходы энергии, что приводит к увеличению потерь на трение по сравнению с лам11нарпым режимом. Вблизи стенок турбулентного потока располагается ламинарный подслой, толщина 6 которого непостоянна и уменьшается с увеличением скорости движения жидкости, т. е. с увеличением ч сла Рейнольдса б я Л 30d/(Re  [c.288]

Турбулентное течение. При турбулентном течении в напорных трубопроводах круглого сечения коэффициент гидравлического трения К, входящий в формулу Дарси—Вейсбаха, зависит от двух безразмерных параметров, числа Рейнольдса Ре = = ufli/v и относительной шероховатости кэ/с1, т. е.  [c.57]

Уравнение Дарси—Вейсбаха (43) представляет собой универсальное расчетное уравнение, с по.мощью которого можно вычислять потери напора в трубах как при ламинарном, так и при турбулентном режиме. Структура формулы остается неизменной, но коэффициент гидравлического трения X для турбулентного режима в общем случае зависит не только от числа Рейнольдса, но и от шероховатости внутренней поБер.хпости трубы.  [c.29]

Для определения потерь напора по длине при расчете илопроводов, транспортирующих свежнй и сброженный осадки, а также уплотненный активный ил, рекомендуется пользоваться формулой Дарси (3.4). Коэффициент гидравлического трения А, при структурном режиме движения можно определять по формуле (6.11), а при турбулентном — по формулам для однородных жидкостей при этом абсолютную шероховатость для илопроводов из стальных и асбоцементных труб следует принимать равной 0,15 мм, а из чугунных труб — 1,5 мм.  [c.145]

Кроме того, исторически сложилась такая ситуация, что в классической теории турбулентных режимов гидравлических сетей не нашло широкого использования понятия гидравлического сопротивления - аналога К, который определяется законом Ома. Вместо него применяется безразмерный гидравлический коэффициент трения X (коэффициент Дарси), значение которого зависит от режима движения жидкости (числа Рейнольдса) и шероховатости поверхности проточной части [39]. Именно этот факт обусловил засилье эмпирических формул гидравлики, значительно затормозил аналитический анализ физических процессов в гидроцепях и гидромашинах. Только во второй половине двадцатого века в работах авторов, которые исследовали режимы компрессоров и пневмо- и гидроприводов с позиций теоретических основ электротехники, появилось понятие "скалярного пневмосопротивления" [29,30], акустического импеданса" [4] и гидравлического импеданса"[58,70]. В то же время, ситуация в гидромеханике, в частности, в теории лопастных машин, осталась неизменной.  [c.9]

Потери напора на трение при турбулентном движении жидкости в трубе с поперечным сечением некруглой формы можно рассчиты-. вать по формуле Дарси (3.4), в которой вместо диаметра трубы принимают гидравлический (эквивалентный) диаметр г=4/ = 4о)/х. Число Рейнольдса в этом случае равно г йт/х. При расчете коэффициента X гладких и шероховатых труб некруглых сечений можно пользоваться формулами для круглых труб, за исключением вытя-  [c.85]



Смотреть страницы где упоминается термин Дарси (гидравлического трения шероховатых : [c.48]    [c.45]    [c.8]    [c.6]   
Гидравлика. Кн.2 (1991) -- [ c.172 ]



ПОИСК



Дарси (гидравлического трения

Дарси (гидравлического трения с эквивалентной шероховатостью

Дарси для



© 2025 Mash-xxl.info Реклама на сайте