Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Впадины (см. Разрушение, частота

НЫМИ. Полученные результаты показали, что в пределах рассматриваемых степеней разрушения частота образования впадин не зависит от времени. Максимальная продолжительность испытания в этой серии была ограничена только методикой измерения разрушения. Когда число перекрывающих друг друга впадин становилось значительным, их нельзя было достаточно точно подсчитать и эксперимент прекращался. Можно, однако, предполагать, что существенное увеличение шероховатости поверхности вследствие появления большого числа впадин может повлиять на характер течения, а также, вероятно, и на частоту их образования.  [c.391]


Влияние коррозионного процесса на усталость выражается главным образом в ускорении пластической деформации, сопровождающейся образованием выступов и впадин. Именно поэтому разрушение от коррозионной усталости не является результатом аддитивного действия коррозии и усталости, а всегда больше их суммы. Такое влияние коррозии объясняет также, почему уровень устойчивости к коррозионной усталости в большей степени определяется коррозионной стойкостью, чем прочностью на растяжение. При низкой частоте нагружения предел коррозионной усталости снижается, так как увеличивается время коррозионного воздействия за один цикл [81]. КРН и коррозионная усталость имеют разные механизмы, поэтому чистые металлы, устойчивые к КРН, подвержены действию коррозионной усталости в той мере, в какой они подвержены общей коррозии.  [c.163]

На фиг. 8.3 показано продольное распределение частоты, вычисленное по общему числу впадин при длинах зоны кавитации 25,4 и 50,8 мм (фиг. 8.2, а и б). Следует отметить, что частота максимальна в конце каверны. Тот факт, что в случае каверны длиной 25,4 мм наиболее интенсивное разрушение происходит, по-видимому, на некотором расстоянии вниз по течению от конца каверны, а в случае каверны длиной 50,8 мм — несколько выше по течению от конца каверны, не имеет никакого значения, поскольку определялись лишь средние длины каверн, а точность их измерения не превышала 15%. Для обеих каверн существует второй максимум, расположенный ниже по течению от первого. Причина его возникновения не  [c.387]

На фиг. 8.5 показано распределение по размерам частоты образования впадин в рассмотренных выше короткой и длинной зонах кавитации. Следует отметить, что вверх по течению от зоны максимального разрушения больших впадин мало, а вниз по течению от этой зоны их гораздо больше. Этот результат согласуется с результатами, полученными в Мичиганском университете [15, 17, 54, 55], и, по-видимому, означает, что перемещающиеся каверны продолжают расти, и чем длиннее каверна, тем больше появляется крупных пузырьков, способных образовать большие впадины. При сравнении числа больших впадин для каверн длиной 25,4 и 50,8 мм обнаруживается та же тенденция.  [c.392]

Это явление может отчасти объяснить экспериментально обнаруженный инкубационный период, в течение которого удаляется очень небольшое количество материала, а затем унос материала происходит с гораздо большей скоростью. Для образца (фиг. 8.16) инкубационный период заканчивается где-то между моментами гид, так как часть ободков, образовавшихся по краям впадин (снимок г), оторвалась и уже не видна (снимок д). Ясно, что этот процесс в разных случаях протекает по-разному. Например, частота образования впадин на поверхности мягкого, но упрочняющегося под ударной нагрузкой материала в начале испытаний должна быть большой, а скорость уноса в последующем периоде относительно малой. Этим можно отчасти объяснить относительно большую кавитационную стойкость нержавеющей стали 18-8. Кроме того, образование впадины с неровными краями может привести к концентрации напряжений, снижающей эффективную допустимую нагрузку в данной точке. Этот эффект в совокупности с рассмотренным выше волноводным эффектом, по-видимому, приводит к резкому усилению разрушения при заданной интенсивности кавитации.  [c.416]


Закалка с применением ультразвуковых колебаний обеспечивает большую эффективность по сравнению с обычной закалкой. Звуковые колебания представляют собой упругие волны, распространяющиеся в газах, жидкостях и твердых телах. При распространении звуковых волн в жидкой среде происходит чередование сжатия во впадинах и разрежения в вершинах волн, при этом частота этого чередования соответствует частоте колебания звуковой волны. При пропускании через жидкость ультразвука частотой f = 18ч-20 кгц и выше наблюдается ультразвуковая кавитация. Она состоит в том, что в вершинах волн вследствие разрежения образуются мельчайшие пузырьки в тех местах, где прочность жидкости меньше из-за растворенного газа или каких-либо примесей. Образующиеся пузырьки захлопываются, создавая при этом местные мгновенные давления в несколько сотен атмосфер. Такие давления вызывают механические разрушения поверхности твердого тела, находящегося вблизи мест захлопывания пузырьков. Это явление используется для удаления окалины с нагретого образца, помещенного в охладитель.  [c.172]

Рассмотренные выше методы измерения скорости роста усталостной трещины и шага усталостных бороздок приводят к погрешностям метрологического характера, связанным с ручной системой измерений шага и субъективным элементом, вносимым при обработке результатов эксперимента. В связи с этим была предпринята попытка разработать методику автоматизированного поиска фракталей (бороздок) с использованием растрового электронного микроскопа (путем автоматического анализа периодичности и частоты структур) и вычислительной техники. Процесс разрушения материала сопровождается формированием в изломе периодической структуры в виде усталостных бороздок, а также растрескиваний микронного и субмикрон-ного размера. Фактически параметры структуры поверхности разрушения изменяются в пределах двух и более порядков. Поэтому для исследования такого рода структур поверхности в растровом электронном микроскопе (РЭМ) целесообразно иметь оптимальный размер объекта с усталостными бороздками, где качественно может быть оценено сравнительно устойчивое значение шага усталостных бороздок при достаточном для осреднения их количестве. Очень важно, чтобы наблюдаемый рельеф поверхности имел j bpo-шую контрастность изображения. В этом случае значимость получаемого различия в сигналах от падающего пучка электронов в местах выступов и впадин становится наиболее существенной, что удобно для анализа информации.  [c.234]

Напомним, что отожженный алюминий был выбран для данных экспериментов исходя из предположения, что любой удар достаточной интенсивности, способный вызвать разрушение обычных конструкционных материалов (включая усталостное разру-ш ение), приведет к остаточной деформации материала поверхности алюминия. Поскольку нет оснований сомневаться в справедливости этого предположения, то на основании проведенных экспериментальных исследований можно заключить, что при кавитации удары разрушающей силы наносятся с очень низкой частотой. Например, основанный на данных о частоте расчет образования впадин и средней площади впадины в случае кавитации, происходящей при скорости течения 27,45 м/с, показывает, что выбранная точка поверхности оказывается внутри зоны разрушающего действия удара лишь приблизительно один раз каждые 100 мин. Случайно оказалось, что в одном из таких экспериментов поверхность фотографировалась через каждые полтора часа. Таким образом, последовательные фотографии соответствуют приблизительно одному удару для данной точки поверхности, двум ударам и т. д. На фиг. 8.8 показано пять таких микрофотографий типичного участка зоны максимального разрушения. Вид этих фотографий подтверждает предположение, что кавитационное разрушение, вызываемое присоединенной каверной, обусловлено относительно редкими мощными ударами, которые либо вырывают частицы материала, либо вызывают преждевременное усталостное разрушение. Недавно в Мичиганском университете при проведении испытаний в трубках Вентури подтверждены эти общие выводы и зафиксированы потери веса образцов на ранней стадии эксперимента до того, как на поверхности появились перекрывающиеся впадины [17, 54, 60]. В одном из таких экспериментов [60] образец из нержавеющей стали, предварительно облученный радиоактивными изотопами, испытывался в воде с целью подтвердить  [c.399]


Лабораторные эксперименты в высокоскоростной гидродинамической трубе Калифорнийского технологического института, которые были описаны в гл. 9, подтверждают вывод о том, что интенсивность разрушения непосредственно не связана со степенью кавитации. В этих экспериментах, в которых условия течения были достаточно просты и точно заданы, было обнару-ежно, что частота образования впадин очень мало зависит от степени кавитации, а общее число впадин на единицу ширины каверны незначительно увеличивается или совсем не увеличивается при увеличении длины каверны вдвое или втрое. Таким образом, влияние увеличения дл ны каверны заключалось в распространении разрушения на большую ширину площадки без заметного влияния на общее число впадин. Напомним также, что в этих экспериментах было найдено, что определяющим параметром по отношению к разрушению была местная скорость потока.  [c.619]

Чтобы использовать высокую контактную прочность и износостойкость зубьев, достигаемые поверхностной закалкой, и повысить сопротивляемость зубьев усталостному разрушению, применяется метод комбинированного упрочнения, по которому рабочая поверхность зубьев подвергается закалке с нагревом токами высокой частоты, а незакалённые поверхности впадины упрочняются наклёпом от дробеструйного аппарата или накаткой роликами.  [c.154]


Смотреть страницы где упоминается термин Впадины (см. Разрушение, частота : [c.390]    [c.404]   
Кавитация (1974) -- [ c.0 ]



ПОИСК



Впадины (см. Разрушение, частота образования впадин)

Разрушение частота образования впадин



© 2025 Mash-xxl.info Реклама на сайте