Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород г — — яа линии насыщения

Термодинамические свойства кислорода на линии насыщения [141, 142]  [c.477]

Теплопроводность А жидкого кислорода на линии насыщения [15]  [c.502]

По данным табл. 27 и уравнению (58) составлена также таблица рекомендуемых значений теплопроводности жидкого кислорода на линии насыщения (табл. 28).  [c.77]

Рекомендуемые значения теплопроводности жидкого кислорода на линии насыщения  [c.77]

Таблица 4.16. Значеиия теплопроводности жидкого и газообразного кислорода иа линии насыщения, Вт/(м К) Таблица 4.16. Значеиия теплопроводности жидкого и <a href="/info/259250">газообразного кислорода</a> иа линии насыщения, Вт/(м К)

Графики этих зависимостей приведены на рис. 9.16. Малая активность марганца как раскислителя создает большие остаточные концентрации марганца в металле, но они не влияют на механические свойства стали (до 1 %). При высоких температурах и достаточно малых концентрациях Мп остаточная концентрация кислорода превышает предел концентрации насыщенного раствора Li (см. с. 329 ), которая показана на рис. 9.16 штриховой линией. Несмотря на малую раскислительную активность, марганец широко применяется в сварочной металлургии, так как кроме кислорода он извлекает из жидкого металла серу, переводя ее в MnS, плавящийся при 1883 К, поэтому при кристаллизации металла шва влияние легкоплавкой сульфидной эвтектики понижается и повышается сопротивление металла образованию горячих трещин. Обобщенная диаграмма плавкости Me — S для железа, кобальта и никеля приведена на рис. 9.17, указаны температуры плавления сульфидных эвтектик, лежащих ниже температур кристаллизации стали, никеля и кобальта.  [c.328]

Сжатый воздух охлаждается в рекуперативном теплообменнике РТ до 7 2=162К 62=457.6 кДж/кг и дросселируется до давления Рз=0,6 МПа. После дросселя Др в процессе 23, который изображен на рис. 27.4. штриховой линией, воздух переходит в состояние влажного пара (7 з=100 К, 1—х= =0,125, ез=319,6 кДж/кг) и направляется, в разделительную (ректификационную) колонну РК. Принцип работы колонны основан на различии температур кипения кислорода Оа и азота N2- При кипении жидкого воздуха из него испаряется преимущественно азот, имеющий более низкую) температуру кипения. Многократно повторяя испарение и конденсацию в разделительной колонне, добиваются достаточно полного разделения кислорода и азота, которые выходят из колонны в состоянии сухого насыщенного пара при давлении, близком к атмосферному  [c.258]

На рис. 1.15 дана анодная кривая AB D, определенная потенциостати-чески для системы металл— среда, которая подвергается изменению в точке В. По мере того как потенциал становится более положительным, плотность тока возрастает в активной области АВ и достигает критической величины (критической плотности тока г кр), при которой скорость- коррозии внезапно падает благодаря образованию защитной окисной пленки на поверхности металла. В этом случае говорят, что металл пассивен и скорость его коррозии, которая зависит от окисной пленки, значительно меньше, чем в активных условиях. Пассивное состояние определяется также окислительно-восстановительным потенциалом раствора и кинетикой катодной реакции. Линия ПК описывает восстановление ионов Н+ на катоде, когда металл активно корродирует в кислоте. Скорость коррозии и коррозионный потенциал определяются пересечением этой линии и анодной кривой в точке 7. В электролите с высоким окислительно-восстановительным потенциалом, который получают насыщением восстановительной кислоты кислородом или добавлением таких окис-  [c.39]


Из сравнения данных, приведенных в таблицах, следует, что скорость коррозии образцов, испытанных в напряженном состоянии при температуре 500° С, в 1,3 раза выше, чем у образцов, испытанных в тех же условиях, но в разгруженном состоянии. С увеличением температуры до 550° С она (за 1000 час) увеличивается с 0,130 до 0,171 г м сут. В логарифмических координатах зависимость скорости коррозии от времени выражается прямой линией. Изменение времени влияет на скорость коррозионного процесса незначительно. После испытаний наблюдалось уменьшение относительного удлинения с 23% (до испытаний) до 12- 9% (после 2600 час испытаний при 550° С). Падение пластических свойств стали можно объяснить старением ее при выдержке в течение 1000—2600 час при температуре 550° С. Уменьшение величины относительного удлинения с 21 до 12,5% наблюдалось также и у образцов из стали 1Х18Н9Т, испытанных в течение 100 и 500 час на воздухе при температуре 600° С, т. е. в условиях, когда отсутствовала коррозионная среда (перегретый пар). Коррозионный процесс образцов в виде трубок, изготовленных из стали ЭИ-851, в пароводяной смеси с воздухом, водородом и азотом протекает равномерно, а в пароводяной смеси с кислородом — в виде язв. У образцов из стали ЭИ-851 коррозионный процесс протекает в виде язв и в воде, насыщенной воздухом. Скорость коррозионного процесса и глубина проникновения коррозии стали ЭН-851 приведены в табл. III-12. Как правило, скорость коррозии во всех испытанных средах несколько уменьшается во времени.  [c.120]

Величину отклонения температуры некоторых веществ в процессе их адиабатического расширения, протекающего без конденсации, от температуры насыщения при плоской поверхности раздела фаз иллюстрирует рис. 4-2, заимствованный из [Л. 43]. На графике в логарифмических координатах нанесены кривые упругости паров азота, кислорода и углекислого газа а также линии изоэптропийных  [c.112]

Возможность выделения коллоидного кремния позволяет следующим образом объяснить экспериментальные результаты. Выделение атомов кремния связано с дефицитом кислорода или, другими словами, с избьгг-ком кремния в сравнении с формулой SiOg. Для выделения кремния необходима, по-видимому, структурная перестройка, поэтому поглощение возрастает с ростом времени выдержки при высокой температуре. Выделившиеся атомы группируются до видимых размеров. Насыщение происходит в результате конечного числа избыточных атомов кремния, а экспоненциальная зависимость отражает статистический характер образования кремниевых ликваций. В то же время в стекле происходит диффузия кислорода [3—6]. Например, в работе Вильямса указывается на возможность диффузии молекулярного кислорода. Молекулы кислорода адсорбируются на кремниевых ликвациях и дают сигнал ЭПР. При нагревании происходит увеличение степеней свободы молекулы кислорода, что приводит к сужению и симметризации линии ЭПР. При достижении определенной температуры связь кислорода с кремнием разрывается и кислород десорбирует, что приводит к резкому уменьшению сигнала. Связи кремния с кислородом имеют различное окружение, и, следовательно, распределены в некотором интервале энергий, что и объясняет исчезновение сигнала в интервале 650 -ь 750° С. При увеличении длительности тепловой обработки растет количество коллоидных частиц, а следовательно, и вероятность адсорбции кислорода.  [c.32]

Если каплю раствора хлористого натрия, насыщенного воздухом и содержащего немного ферроксил — индикатора, поместить на шлифованную стальную пластинку, то вскоре по всей области капли появляются маленькие розовые и голубые пятна голубые (анодные) точки лежат в основном вдоль линии шлифовки. Это первоначальное распределение (фиг. 30, а) оно существует до тех пор, пока кислород, первоначально растворенный в электролите, не израсходуется затем постепенно в центральной области, куда благодаря большой глубине жидкости доставка кислорода затруднена, образование щелочи почти прекращается и розовые пятна исчезают. Если теперь  [c.113]


Смотреть страницы где упоминается термин Кислород г — — яа линии насыщения : [c.53]    [c.159]    [c.739]   
Справочник по теплофизическим свойствам газов и жидкостей (1972) -- [ c.477 , c.478 ]



ПОИСК



Кислород

Кислород, вязкость линии насыщения

Насыщение

Насыщение кислородом

Насыщенность

Насыщенность кислородом

Пар насыщенный



© 2025 Mash-xxl.info Реклама на сайте