Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конечный элемент несовместный совместный

Конструирование треугольного несовместного конечного элемента с тремя степенями свободы в узле. Для построения функций рассмотрим треугольный конечный элемент Купера (с шестью степенями свободы в узле). Они совместны и полны. Выделим те пз форм перемещений, которые соответствуют нуж-  [c.20]

Обратимся теперь к несовместным элементам. Сходимость решения к точному имеет место и в этом случае, если в пределе (т.е. по мере сгущения сетки) в аппроксимирующих функциях исчезают члены, создающие несовместность. Следовательно, сходимость будет гарантирована, если несовместные конечные элементы, во-первых, способны воспроизвести в пределе ли нейное поле перемещений и, во-вторых, оказываются прн этом совместными. Обычно используют более жесткое требование, в соответствии с которым должна обеспечиваться сплошность тела в условиях линейного поля перемещений при любых размерах элемента, а не только в пределе.  [c.214]


Несмотря на достаточную общность, эти приемы требуют рас смотрения совокупности конечных элементов, что может привест к определенным затруднениям. Более совершенные методы пред ложены в работах [34, 25]. Сформулированная теорема [25] дас возможность судить о сходимости несовместного конечного эле мента на основе рассмотрения координатных функций тольк( по области этого элемента, т. е. аналогично тому, как делалоо для совместных элементов (см. п. 1.1).  [c.12]

Как видно из (1.18), для сходимости МКЭ достаточно спра ведливости условия 3 теоремы при t = . В этом случае услови( 3 означает, что при постоянной по конечным элементам (КЭ) деформации работа внутренних сил, соответствующих этой де формации, на несовместных перемещениях фjg равна работе тез же сил на совместных перемещениях 1/g, что указывает на некоторую энергетическую эквивалентность функций фjg и A,jg.  [c.12]

Сходимость несовместных конечных элементов проверяется по Следующей схеме. Вначале проверяется выполнение тождеств (1.1 ), а потом подбираются совместные функции Ijg, удовлетво-ряюД[ие условиям 2 и 3 теоремы. Функции Xjg ищутся как решение следующей системы уравнений  [c.13]

Следовательно, сейчас уже имеется достаточно надежный аппарат для теоретического обоснования несовместных конечных элементов, использование которых до недавнего времени считалось некорректным. Доказательство сходимости МКЭ в несовместном случае не использует традиционные приемы вариационно-разностных методов и является новой математической задачей. Таким образом, если МКЭ в совместном случае можно классифицировать как модификацию метода Ритца, то обоснованное применение несовместных конечных элементов позволяет классифицировать МКЭ как самостоятельный метод не только с точки зрения процедурной реализации, но и с точки зрения теоретического обоснования.  [c.13]

Следует отметить одно важное обстоятельство. Как говорилось в гл. 2, аппроксимирующие функции в методе Ритца должны удовлетворять всем геометрическим связям. Это означает, в частности, что они должны быть непрерывными функциями координат. Следовательно, метод конечных элементов можно рассматривать как метод Ритца лишь в том случае, если на границах между конечными элементами обеспечивается непрерывность перемещений. Конечные элементы, которые дают непрерывное поле перемещений, называются совместными (или согласованными). Не всегда, однако, удается выполнить условие совместности, вследствие чего в практике нередко используются несовместные элементы. При переходе от одного элемента к другому перемещения будут тогда претерпевать разрывы, и поэтому нельзя утверждать, что найденные узловые перемещения соответствуют минимуму полной энергии системы.Тем не менее при выполнении определенных условий (о которых будет сказано в 6.4) решение в пределе снова будет стремиться к точному, а в некоторых случаях несовместные элементы позволяют получить даже более точные результаты, нежели совместные.  [c.124]



Смотреть страницы где упоминается термин Конечный элемент несовместный совместный : [c.222]    [c.231]   
Метод конечных элементов в задачах строительной механики летательных аппаратов (1985) -- [ c.138 ]



ПОИСК



261, совместных

Конечный элемент

Конечный элемент несовместный

Совместность

Элемент несовместный



© 2025 Mash-xxl.info Реклама на сайте