Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вращение тела вокруг неподвижной оси. Уравнения для реакций подшипников

Из системы уравнений (66) нужно определить реакции подшипников Л и Б. Имеем шесть неизвестных, а уравнений для их определения только пять, так как последнее уравнение не содержит опорных реакций. Это уравнение является дифференциальным уравнением вращения твердого тела вокруг неподвижной оси. Неизвестные Нлг и кв входят только в третье уравнение системы (66), поэтому для определения остальных четырех неизвестных имеем четыре уравнения. Следовательно, неизвестные Нах, кАу Рвх в >(их обычно называют боковыми составляющими реакций подшипников) вполне определяются из системы (66). Составляющие к 1 и кр остаются неопределенными, так как эти неизвестные входят только в одно уравнение.  [c.351]


В последнее уравнение системы (25) не входят силы реакций закрепленных точек. Это уравнение является уравнением вращения твердого тела вокруг неподвижной оси Ог. Из него по заданным силам определяется угловое ускорение е, если известен момент инерции тела относительно оси вращения. По угловому ускорению интегрированием определяется угловая скорость, если известно ее значение в начальный момент. Для определения шести неизвестных проекций сил реакций остается пять уравнений. Система уравнений (25) не позволяет определить каждую из неизвестных 2а и 1 - Из третьего уравнения системы можно определить только сумму этих неизвестных. Для того чтобы из этой системы можно было определить все неизвестные, необходимо закрепить тело в точках А п В так, чтобы неизвестных проекций сил реакций в них было не более пяти. Этого можно достигнуть, например, поместив в точке А подпятник, а в точке В — подшипник (рис. 88). Для таких опор оси тела = 0 и все оставшиеся неизвестные могут быть определены из системы уравнений (25).  [c.361]

Вычисление этих шести неизвестных величин аналитическим путем связано с интегрированием сложных дифференциальных уравнений, приводящих к эллиптическим функциям. Решение уравнений дано Е. Лагранжем и С. Ковалевской. Выше было отмечено, что ось вращения йо меняет свое положение, а вектор кинетического момента сохраняет его. Следовательно, если ось вращения удерживать с помощью подшипников, то вектор К вынужден будет менять свое положение, что вызовет реакции в подшипниках. Это явление получило название гироскопического давления. Если тело имеет неподвижную точку О и ось динамической симметрии (гироскоп), то вращение происходит только вокруг оси инерции J , поэтому со = 0 Q = 0 х = О и /И = О, вследствие чего уравнение (103) принимает вид  [c.204]


Смотреть главы в:

Основы классической механики  -> Вращение тела вокруг неподвижной оси. Уравнения для реакций подшипников



ПОИСК



124 — Уравнение с вращением

Вращение вокруг неподвижной оси

Вращение тела вокруг оси

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси и уравнения для определения реакций подшипников

Подшипник, его реакция

Реакции неподвижной оси

Реакция оси вращения тела

Тела Вращение вокруг неподвижной

Тело вращения

Уравнение вращения тела



© 2025 Mash-xxl.info Реклама на сайте