Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Формулы Кенига для мер движения системы

ФОРМУЛЫ КЕНИГА ДЛЯ МЕР ДВИЖЕНИЯ СИСТЕМЫ  [c.149]

Формулы Кенига для мер движения системы  [c.149]

Эта формула и выражает теорему Кенига кинетическая энергия системы равна сумме кинетической энергии системы в ее переносном поступательном) движении вместе с центром инерции и кинетической энергии системы в ее относительном движении по отношению к центру инерции.  [c.200]


Изложенные факты позволяют приступить к выводу уравнений движения ОТМ в форме уравнений Лагранжа 2-го рода. Ио теореме Кенига с учетом статической уравновешенности ОТМ (m ir = mil) его кинетическая энергия равна кинетической энергии его центра инерции Т в предположении, что в нем сосредоточена вся масса системы, плюс кинетическая энергия врагцения манипулятора, т. е. определяется формулой  [c.133]

Согласно определению математического ротора усилие Р является приведенной силой физического ротора согласно уравнению (64). Точкой приведения силы Р является точка Шток 5 имеет массу Шц,, которая также является приведенной для данного физического ротора. Вал ротора служит звеном приведения момента сил М . В плоскости перемещения грузов имеются две системы координат с началами в точках О и От. Точка О может быть выбрана произвольно на оси вращения (оси Оу), точка 0 является точкой приведения силы Р, лежит на оси Оу и является одновременно вершиной профиля 3. Согласно схеме рис. 42 на рис. 43 ордината точки приведения силы Р в системе хОу обозначена Ь и изменяется от до Следовательно, координаты точки Ох в начальном положении в координатной системе хОу (О Ьх) оси х обеих систем параллельны. Обе системы вращаются вместе с ротором. Ротор имеет приведенный момент инерции, определяемый форл улой (62). Под моментом инерции У понимается некоторая постоянная величина, равная моменту инерции покоя изучаемого физического ротора. МомеНт инерции Д/ из формулы (62) может быть найден из анализа рис. 43. Любой элементарный механизм ротора имеет общий центр масс активных подвижных звеньев, перемещение которого, а также перемещение активных подвижных звеньев относительно этого центра определяет величину ДУ. В математическом роторе (см. рис. 43) активные звенья каждого элементарного механизма заменены одним центробежным грузом 1 (следовательно, число грузов в математическом роторе равно числу элементарных механизмов в роторе данного физического толкателя). Для такой замены необходимо, чтобы кинетическая энергия груза 1 в каждый момент времени равнялась кинетической энергии этих звеньев. Согласно теореме Кенига кинетическая энергия последних равна кинетической энергии массы, сосредоточенной в центре масс элементарного механизма, и сумме кинетических энергий всех материальных точек активных подвижных звеньев в движении относительно центра масс. Кинетическая энергия каждого центробежного груза (см. рис. 43) в его движении относительно корпуса 7  [c.119]



Смотреть главы в:

Основы классической механики  -> Формулы Кенига для мер движения системы



ПОИСК



Движение системы

Кениг

Формула Кенига



© 2025 Mash-xxl.info Реклама на сайте