Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усилитель приемника оптических сигналов

УСИЛИТЕЛЬ ПРИЕМНИКА ОПТИЧЕСКИХ СИГНАЛОВ  [c.346]

К числу новых элементов, приобретающих в развитии электроники решающее значение, относятся полупроводниковые лазеры, твердотельные лазеры, лазеры на красителях с перестраиваемой частотой, все виды миниатюрных квантовых генераторов, квантовые генераторы без зеркал усилители слабых оптических сигналов, приемники лучистой энергии, пассивные и активные световоды, устройства внешней и внутренней модуляции лазерного потока, устройства для управления его частотой,  [c.112]


На практике без особых трудностей можно реализовать модуляцию светодиодов частотами до 100 МГц, а полупроводниковых лазеров — вплоть до 1 ГГц. Имеющиеся в настоящее время полупроводниковые р4-п и лавинные фотодиоды способны детектировать оптические сигналы с частотой модуляции свыше 1 ГГц. Однако использование самых высоких указанных частот требует разработки совершенно нового весьма сложного усилителя для приемника.  [c.29]

Другой важный параметр системы связи — отношение сигнал-шум определяется эффективным уровнем шума на входе усилителя приемника и полезной мощностью оптического сигнала на входе фотодетектора. Отличительная особенность оптических систем связи заключается в том, что шум приемника содержит составляющую, прямо пропорциональную мощности принимаемого оптического сигнала. Это так называемый дробовой (фотонный) шум, характерный для процесса детектирования, ограничиваемого квантовым шумом. Поэтому в большинстве обычных оптических систем связи, в которых используется модуляция оптического излучения по мощности, уровень шума зависит от величины сигнала. Важно отметить, что шум приемника обычно минимизирован, однако следует иметь в виду, что он увеличивается обычно пропорционально ширине полосы частот, занимаемой сигналом.  [c.30]

Увеличение сопротивления высокочастотного тракта улучшает отношение сигнал-шум, пока слагаемые а и г значительны по величине. Интересно отметить, что этот результат был открыт дважды. Сначала в -х годах, когда были впервые опубликованы ранние работы по шумам усилителей, а затем в 50-е годы, когда потребовались мало-шумящие усилители для высокочувствительных телевизионных систем и усиления сигналов с выходов фотоумножителей. И, наконец, он был вновь переоткрыт в 70-е годы, когда стали серьезно исследовать мало-шумящие усилители для приемников оптических систем связи.  [c.354]

Возможное применение волоконных ВКР-усилителей предварительное усиление сигнала перед его регистрацией на приемнике системы оптической связи [72]. Измерения в эксперименте показали [63], что отношение сигнал/шум на приемнике определяется усиленным спонтанным КР, которое неизменно сопутствует процессу усиления. Часть энергии накачки преобразуется в спонтанное стоксово излучение и усиливается вместе с сигналом. Таким образом, выходное излучение состоит не только из желаемого сигнала, но также из широкополосного шума с шириной спектра 10 ТГц или более. В приближении неистощенной накачки можно получить аналитическое выражение для мощности усиленного спонтанного излучения [60]. С практической точки зрения представляет интерес отношение мощностей сигнала при включенной и выключенной накачках. Это отношение можно измерить экспериментально. Эксперимент с накачкой на длине волны 1,34 мкм показал, что это отношение составляет около 24 дБ для первой стоксовой компоненты на длине волны 1,42 мкм. но падает до 8 дБ, когда первая стоксова компонента используется для усиления сигнала на длине волны 1.52 мкм. Это отношение в схеме со встречными волнами сигнала и накачки Меньше, чем в схеме, где они распространяются в одном направлении  [c.231]


Обобщенная структурная схема оптического приемника приведена на рис. 14.1. Как видно из нее, фотодиод преобразует принимаемый оптический сигнал в агпектрический ток, пропорциональный мощности оптического сигнала. Следующий за фотодиодом усилитель усиливает полученный токовый сигнал и преобразует его в напряжение. Как и в любой системе связи, отношение сигнал-шум на выходе оптической системы и ее характеристики определяются тем звеном оптического приемника, где принятый сигнал имеет наименьший уровень. Следовательно, характеристики этого звена являются основными при проектировании всей системы связи. В 14.2 будут рассмотрены различные источники шума в приемнике оптических сигналов. В последующих параграфах определяется зависимость отношения сигнал-шум от уровня принимаемого сигнала для различных схем усилителей. И, наконец, в заключительных главах будет найдено минимальное значение отношения сигнал-шум, необходимое для нормальной работы системы связи при использовании различных видов модуляции.  [c.346]

Хотя использование большого входного сопротивления помогает максимизировать отношение сигнал-шум в приемнике оптических сигналов, однако оно одновременно порождает два существенных неудобства, вызванных необходимостью осуществлять значительную по величине коррекцию. Первое состоит в том, что коррекция должна быть индивидуально приспособлена для каждой схемы. Она ие может быть просто установлена заранее. Причина в том, что коэффициент усиления усилителя должен изменяться по закону О (/) = о (1 + j2яf R), а значения С и R изменяются от прибора к прибору, от схемы к схеме и часто зависят от температуры. В результате каждая схема должна настраиваться индивидуально. Вторая проблема в том, что значительное изменение коэффициента усиления с частотой означает уменьшение динамического диапазона усилителя. (Динамический диапазон характеризует максимальный неискаженный сигнал на выходе усилителя и обычно определяется его отношением к наименьшему допустимому сигналу.) Причину этого можно пояснить следующим образом. Пусть требуется увеличить коэффициент усиления на высоких частотах в 100 раз по сравнению с усилением на низких частотах, как это показано на рис. 14.4. Это можно осуществить ослаблением низких частот после начального усиления, которое в данном случае должно быть не менее 1000 (60 дБ). При таком большом усилении не возникает никаких проблем для высоких частот, поскольку они уже ослаблены во входной цепи усилителя, однако при этом любые незначительные по величине низкочастотные сигналы вызовут насыщение усилителя. Это обстоятельство и ограничивает его динамический диапазон.  [c.358]

Чтобы результаты измерения шумов имели определенный смысл, необходимо обеспечить такие условия, при которых шумы, связанные со всеми модами, кроме сихнальной, не достигали бы фотоприемника. Между усилителем и приемником необходимо установить систему диафрагм [46, 47]. Рассмотрим для примера случай лазера с почти конфокальным резонатором. Лазер служит генератором оптических сигналов. (Позднее мы рассмотрим случай с применением других источников помимо резо-наторных лазеров.)  [c.476]

Чувствительность приемника определяется минимальным по мощности оптическим сигналом, который может быть обработан. Уровень данного сигнала определяется интенсивностью шумов на входе в приемник. В последней главе будет обсуждаться вопрос о пороге чувствительности детектора. Порог чувствительности приемника практически совпадает с характеристикой детектора, за исключением того, что на него влияют шумы усилителя. Кроме уровня шумов, порог чувствительности зависит также от SNR- или BER-характеристик системь1  [c.140]

В. последнее время разработано несколько систем, в которых телевизионное изображение передается по оптическому каналу. Простейшая телевизионная система [25] была выполнена из готовых узлов и деталей. Функциональная схема этой системы представлена на рис. 28. Она включала в себя лазер промышленного прозводст-ва, два промышленных телевизора, стандартный усилитель и видеоусилитель. Кроме того, использовались приемная и передающая оптические системы, модулятор оптического излучения и оптический фильтр. Телевизионные сигналы, получаемые от первого телевизора, усиливаются и поступают на модулятор (видеосигналы снимаются с одного из каскадов видеоканала телевизионного приемника). Модулятор, стоящий на выходе излучения  [c.84]


Модуль излучателя состоит из стержня, лампы-накачки, осветителя, высоковольтного трансформатора, зеркал резонатора, модулятора добротности. В качестве источника излучения используется обычно неодимовое стекло или алюминиево-иттриевый гранат, что обеспечивает работу дальномера без системы охлаждения. Все элементы головки размещены в жестком цилиндрическом корпусе. Точная механическая обработка посадочных мест на обоих концах цилиндрического корпуса головки позволяет производить ее быструю замену и установку без дополнительной регулировки, а это обеспечивает простоту технического обслуживания и ремонта. Для первоначальной юстировки оптической системы используется опорное зеркало, укрепленное на тщательно обработанной поверхности головки, перпендикулярно оси цилиндр рического корпуса. Осветитель диффузионного типа пред ставляет собой два входящих один в другой цилиндра, между стенками которых находится слой окиси магния. Модулятор добротности рассчитан на непрерывную ус тойчивую работу или на импульсную с быстрыми запусками. Основные данные унифицированной головки таковы длина волны 1,06 мкм, энергия накачки—25 Дж, энергия выходного импульса — 0,2 Дж, длительность импульса 25 НС, частота следования импульсов 0,33 Гц (в течение 12 с допускается работа с частотой 1 Гц), угол расходимости 2 мрад. Вследствие высокой чувствительности к внутренним шумам фотодиод, предусилитель и источник питания размещаются в одном корпусе с возможно более плотной компоновкой, а в некоторых моделях все это выполнено в виде единого компактного узла. Это обеспечивает чувствительность порядка 5-10 Вт. В усилителе имеется пороговая схема, возбуждающаяся в тот момент, когда импульс достигает половины максимальной амплитуды, что способствует повышению точности дальномера, ибо уменьшает влияние колебаний амплитуды приходящего импульса. Сигналы запуска и остановки генерируются этим же фотоприемником и идут по тому же тракту, что исключает систематические ошибки определения дальности. Оптическая система состоит из йфокального телескопа для уменьшения расходимости лазерного. луча и фокусирующего объектива для фото приемника. Фотодиоды имеют диаметр активной пло-  [c.140]

Если когерентный световой сигнал усиливать лазерным усилителем, то к нему добавляются шумы спонтанного излучения. Пользуясь описанной выше системой с дифракционным ограничением пучка, согласованием мод и пространственной фильтрацией, можно уменьшить дополнительный шум спонтанного излучения до значений, близких к теоретическому минимуму. Вопрос заключается в следующем можно ли получить выигрыш в чувствительности системы, т. е. в минимальном обнаруживаемом сигнале Как увидим ниже, ответ зависит от спектральных характеристик приемника. Если провести поверхностный анализ ОСШ для систем, основанных на использовании лазерных усилителей с небольшим усилением, работающих в видимой области спектра, для которой имеются фотоэлектронные приемники с хорошими характеристиками, то можно легко сделать вывод, что лазерный усилитель ухудшает характеристики большинства систем связи [19, 49], особенно если лазерный предусилитель сравнить с оптическими гетеродинными или гомодинными системами. Но более тщательный теоретический анализ (слишком подробный, чтобы воспроизводить его в данной книге) [50] показывает, что в зависимости от уровня инверсии лазерного усилителя и спектрального квантового выхода приемника при использовании лазерного предусилителя может снизиться минимальный обнаружимый уровень сигнала. Результаты измерений, проведенных на длине волны 3,508 мк (одно из лучших окон прозрачности атмосферы) с лазерным предусилителем на Хе, имеющем большое усиление [51, 52], показали, что вследствие сужения полосы усиления получен выигрыш в минимальном обнаружимом сигнале на 16 дб. Поскольку независимые измерения инверсии  [c.482]

На рис. 35 показана инфракрасная головка самонаведения американской ракеты класса воздух — воздух типа Сайдуиндер . Головка имеет приемную оптическую систему с зеркальной оптикой, расположенной в носовой части ракеты. Снаружи инфракрасная головка закрыта обтекателем из материала, обладающего высокой прозрачностью для инфракрасных лучей. В фокусе оптической системы находится высокочувствительный и малоинерционный приемник из сернистого свинца, преобразующий тепловое излучение цели в электрические сигналы, которые с усилителей подводятся к системе управления (серворулям) ракеты.  [c.75]


Смотреть страницы где упоминается термин Усилитель приемника оптических сигналов : [c.278]    [c.146]    [c.197]   
Смотреть главы в:

Оптические системы связи  -> Усилитель приемника оптических сигналов



ПОИСК



Оптические усилители

Оптический сигнал

Приемник

Сигнал



© 2025 Mash-xxl.info Реклама на сайте