Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Математические модели элементов электронных схем

Примеры математических моделей элементов электронных схем. Для конденсаторов, катушек индуктивности и резисторов чаще всего применяют простые модели (4.33). Примерами сложных элементов являются транзисторы, диоды, трансформаторы.  [c.171]

АВТОМАТИЗАЦИЯ СХЕМОТЕХНИЧЕСКОГО ПРОЕКТИРОВАНИЯ 6.1. Математические модели элементов электронных схем  [c.127]

Математическая модель элемента электронной схемы представляет собой систему ОДУ относительно фазовых переменных тока I и потенциала ф (или напряжения Ui = i—ф/, где ф,- и ф/ — потенциалы -го и -то узлов схемы, 1ф ). Существует несколько форм представления такой модели инвариантная, схемная и алгоритмическая (или программная).  [c.128]


Формы представления моделей элементов схем. При моделировании компонентами электронной схемы являются резистор, конденсатор, катушка индуктивности, отдельный электронный прибор в дискретном или интегральном исполнении, источник тока или напряжения и т. п. Элементом электронной схемы может быть как компонент, так и типовой фрагмент схемы (вентиль, триггер и т. п.). Математическая модель электронной схемы при анализе на ЭВМ — система обыкновенных дифференциальных уравнений, связывающая токи и напряжения в различных компонентах схемы. Математическая модель схемы, полученная непосредственным объединением моделей компонентов в общую систему уравнений на основе топологических уравнений, называется полной моделью схемы. Математическая модель схемы, являющаяся более простой по затратам времени и памяти ЭВМ на ее реализацию, чем полная модель, называется макромоделью схемы. Типовые фрагменты схемы (функциональные узлы) состоят из отдельных компонентов, поэтому модели таких фрагментов в составе сложных электронных схем являются макромоделями. Следовательно, можно выделить два основных типа моделей элементов электронных схем модели компонентов и макромодели функциональных узлов.  [c.128]

Применение ЭВМ открывает новые возможности при проектировании технологической схемы опреснительной установки. Электронно-вычислительная машина позволяет проводить большое число вариантных расчетов с определением оптимальных характеристик установки удельных расходов теплоты и электроэнергии, числа ступеней и поверхностей нагрева в любом заданном диапазоне исходных данных. При разработке математической модели схемы опреснительной установки необходимо предварительно составить модели отдельных ее элементов, а затем полученные зависимости следует дополнить уравнениями связи их между собой.  [c.128]

При определенных условиях оперативной цепи решений можно поставить в соответствие марковскую цепь, что и сделано в гл. 5 при построении алгоритмов эффективности и оптимизации. С другой стороны, уровень настройки можно рассматривать как математическое ожидание стохастической функции х (т), признака качества, рассматриваемого как функция от количества повторений операции. Планы выборочных проверок становятся при таком подходе операторами преобразования. При расчете эффективности в условиях описанной модели использование теории стохастических функций может привести к резкому повы шению требований к математической подготовке читателя без заметных практи ческих результатов. В то же время не вызывает сомнения тот факт, что в уело ВИЯХ полной автоматизации технологических процессов с применением непрерыв кого статистического регулирования на базе электронных анализаторов с обраТ ной связью использование результатов теории случайных функций становится неизбежным, но все же в той или иной комбинации с элементами комплексной методологической схемы, предложенной в этой книге-  [c.46]


Сложные математические модели электрической подсистемы. Наиболее распространенными сложными элементами электрической подсистемы в радиоэлектронных устройствах являются диод, биполярный и МДП-транзи-сторы. Создано и используется несколько разновидностей ММ диодов и биполярных транзисторов, различающихся точностью, областями адекватности, показателями экономичности. Рассмотрим характерные модели диода и биполярного транзистора, называемые моделями ПАЭС и используемые в ряде программ анализа электронных схем.  [c.89]

Типовые блоки можно разделить на два класса универсальные макроэлементы и типовые базовые элементы. Универсальные макроэлементы реализуют математические описания основных свойств электронных устройств и не имеют физического прототипа (описание логических уравнений, типовых характеристик, фиксация момента достижения порога срабатывания и т. п.). Очень сложно разработать функционально полный набор макроэлементов для оперативного макромоделирования цифровых и аналоговых схем [4]. Набор универсальных макроэлементов позволит формализовать разработку макромоделей второго уровня сложности. Типовые базовые элементы отражают типовые структурные части моделируемых узлов (входные, промежуточные и выходные каскады схем и т. п.). В первом приближении базовые элементы должны быть идеальными каскадами электронных схем при минимальной сложности их структуры. Набор моделей базовых элементов в сочетании с макроэлементами позволит формализовать разработку наиболее точных макромоделей третьего уровня сложности. На рис. 6.11 приведена эквивалентная схема макромодели третьего уровня для операционного усилителя 140УД7. Каскады входной дифференциальный и выходной моделируются с помощью базовых элементов, а промежуточный— с помощью макроэлементов.  [c.139]

Программу разрабатывают по чертежу детали или по математическому выражению профиля. Программу трехкоординатной обработки деталей сложного фасонного профиля рассчитывают на электронно-вычислительной машине. Результаты вычисления представляют собой расстояния между опорными точками, записанные на перфоленте. Программу с перфоленты на магнитную ленту записывают на линейном интерполяторе в виде унитарного кода на шести дорожка . Шестиканальная головка считывает записи программы с магнитной ленты. Структурная схема системы программного управления вертикально-фрезерным станком одной из последних моделей (6Н13-ЭГ) дана на рис. 1.35. Схема включает в себя следующие элементы лентопротяжное устройство для перемещения магнитной ленты 1, считывающую магнитную головку 2, усилители импульсов 3, формирователи импульсов 4, узлы распределения 5, усилители 6, шаговые электродвигатели ЭШД, гидравлические усилители крутящих моментов ГУ.  [c.61]


Смотреть страницы где упоминается термин Математические модели элементов электронных схем : [c.219]   
Смотреть главы в:

Основы теории и проектирования САПР  -> Математические модели элементов электронных схем



ПОИСК



Математические модели

Модели Элементы

Схема (см. Модель)

Электронные схемы

Элемент схемы

Элементы электронных схем



© 2025 Mash-xxl.info Реклама на сайте