Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения в фазовом пространстве для собственных энергетических состояний

Уравнения в фазовом пространстве для собственных энергетических состояний  [c.102]

Исходя из двух связанных уравнений в фазовом пространстве (3.17) и (3.18), вывести уравнения, определяющие функцию Вигнера собственного энергетического состояния обращённого гармонического осциллятора с потенциалом  [c.118]

Функция Вигнера. В гл. 3 мы ввели понятие функции Вигнера как возможного расширения классической функции распределения в фазовом пространстве на квантовый случай. Было получено выражение для функции Вигнера собственного энергетического состояния гармонического осциллятора. Вывод в гл. 3 основывался на дифференциальном уравнении в частных производных в фазовом  [c.129]


В разделе (3.5) мы свели уравнения в фазовом пространстве для функции Вигнера собственного энергетического состояния гармонического осциллятора к обыкновенному дифференциальному уравнению  [c.693]

Функция Вигнера как волновая функция. Чтобы проиллюстрировать это, решим два связанных уравнения для случая собственного энергетического состояния гармонического осциллятора. На этом примере мы покажем, что уравнение на собственные значения энергии в фазовом пространстве одномерного гармонического осциллятора сводится к уравнению Шрёдингера двумерного гармонического осциллятора.  [c.109]

В первое уравнение входит лапласиан по двум переменным и ( в фазовом пространстве. Кроме того, сами эти переменные входят в уравнение квадратично. Следовательно, это уравнение на собственные энергетические состояния одномерного гармонического осциллятора полностью аналогично уравнению Шрёдингера для собственных энергетических состояний двумерного гармонического осциллятора. Отсюда вытекает, что можно найти функцию Вигнера с помош,ью разложения по произведениям волновых функций гармонического осциллятора, содержаш,их полиномы Эрмита.  [c.109]

Уравнение Шрёдингера в фазовом пространстве. Проиллюстрируем эту технику представления квантово-механических операторов с-числами для случая не зависящего от времени уравнения Шрёдингера. В частности, покажем, что получаются два связанных уравнения в фазовом пространстве (3.17) и (3.18), определяющие функцию Вигнера собственного энергетического состояния.  [c.115]


Смотреть главы в:

Квантовая оптика в фазовом пространстве  -> Уравнения в фазовом пространстве для собственных энергетических состояний



ПОИСК



Пространство состояний

Пространство состояний, фазовое

Собственное состояние

Собственное энергетическое состояние

Состояние фазовое

Состояние энергетическое

Уравнение состояния

Фазовое пространство

Фазовое пространство (/’-пространство)



© 2025 Mash-xxl.info Реклама на сайте