Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сценарии стохастизации

Рассмотренные в разделах 2.4-2.5 процессы стохастизации излучения непосредственным образом обусловлены случайным распределением неоднородностей среды или неровностей отражающих поверхностей. Существует, однако, принципиально иной механизм стохастизации изначально регулярных световых пучков, который может проявляться даже в средах с регулярным изменением показателя преломления. Этот механизм представляет собой частный (оптический) случай физического сценария перехода к динамическому хаосу детерминированных нелинейных систем.  [c.117]


Д. Рюэлль и Ф. Такенс (1971) высказали гипотезу о том, что турбулентность представляет собою завихренное течение вязкой жидкости, эволюционирующее на странном аттракторе (и потому обладающее указанными выше свойствами стохастичности). Они доказали, что у широкого класса динамических систем канторов-ский странный аттрактор (т. е., в некотором общем смысле, турбулентность) может появляться в результате разрушения четырехчастотного движения путем возникновения резонансов его высоких гармоник (а в их работе с Ньюхаузом (1978) это доказательство было распространено и на трехчастотные движения). Ныне обнаружен уже целый ряд и других сценариев стохастизации (т. е. схем возникновения турбулентности).  [c.22]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]


Рассмотрим тот же самый процесс на более физическом языке. Расширяющаяся по закону р = ш сферическая оболочка из двух коррелированных частиц встречает на своем пути множество частиц и создает новые рассеянные волны. Если некоторая частица с номером "3", сталкивающаяся с расширяющей оболочкой, имеет вид волнового пакета ф гз), то соответствующее рассеяние можно найти следующим образом. Представим волновую функцию расширяющейся оболочки в виде суперпозиции волнового пакета, такого же, как у встречного пакета, и оставшуюся за вычетом пакета часть. Вьщеленный нами волновой пакет повторит с встречной частицей тот же самый сценарий образования новой рассеянной сферической оболочки из двух скоррелированных частиц. А оставшаяся часть старой сферической оболочки за время взаимодействия А/ Л/щ не успеет деформироваться, так что совместная волновая функция />(п, гг, гз) окажется равной нулю в точке рассеяния Г1 = -Г2 = гз (все г, отсчитываются от центра масс первой пары частиц). Площадь оболочки Апр возрастает со временем как поэтому число рассеяний и стохастизация волновой функции пары частиц г1,гг возрастает очень резко по мере приближения г к т. Соответственно и переход - Йт должен происходить доста-  [c.234]


Смотреть страницы где упоминается термин Сценарии стохастизации : [c.130]    [c.505]   
Смотреть главы в:

Статистическая гидромеханика Теория турбулентности Том1  -> Сценарии стохастизации



ПОИСК



Сценарий



© 2025 Mash-xxl.info Реклама на сайте