Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамическое нагружение сферической оболочки

Динамическое нагружение сферической оболочки  [c.305]

С учетом постоянства отношения параметров и q-aa в процессе эксперимента структура зависимости (8.30) полностью совпадает с критериальным уравнением аффинного моделирования областей динамической неустойчивости пологой сферической оболочки (8.28). При экспериментальных исследованиях динамической устойчивости элементов конструкций встречаются случаи, когда внешние нагрузки изменяются не периодически, а по некоторой наперед заданной программе. Моделирование таких процессов нагружения рассмотрим на примере динамического сжатия шарнирно опертого несовершенного стержня (рис. 8.11).  [c.189]


В гл. 6 освещены вопросы устойчивости оболочечных систем при неоднородных напряженных состояниях, вызванных действием ло-1 альных нагрузок. Рассмотрена устойчивость сферического сегмента, подкрепленного опорным кольцом, к которому приложены произвольные локальные нагрузки в его плоскости. При проведении исследований применялся модифицированный метод локальных вариаций. Решение основано на минимизации функционала энергии, составленного с учетом вида нагружения и конструктивных особенностей системы. В качестве примера рассмотрены задачи устойчивости сферы при нагружении двумя радиальными силами и упругим ложементом. Приведены результаты экспериментального исследования устойчивости и прочности сферических сегментов — сплошных и с отверстиями — и прочности колец при локальных нагрузках. Исследования проведены на специальной установке для исследования несущей способности оболочек при локальном нагружении. Получены кинограммы процесса потери устойчивости системы. Рассмотрена задача динамической устойчивости цилиндрической оболочки при импульсном нагружении подкрепляющего кольца. Материал оболочки и кольца принят упругим или нелинейно-упругим. Рассмотрено взаимодействие симметричных и изгибных колебаний системы с построением областей динамической устойчивости.  [c.5]

Все известные решения об устойчивости в нелинейной теории упругости основаны на бифуркационном критерии. Как показано в 10, этот критерий приводит к правильному ответу только в случае, когда собственные значения соответствующей краевой задачи действительны. Большинство авторов не проверяет выполнение этого условия. В обсуждаемой области до сих пор нет ни одного решения для динамической потери устойчивости, так же как и нет хотя бы одного решения для зависящей от времени нагрузки. Очень интересным примером было бы, например, рассмотрение сферической оболочки, нагруженной давлением, линейно возрастающим со временем. Это решение позволило бы дать ответ на вопрос влияние начального движения стабилизирующее или дестабилизирующее Тот же вопрос можно поставить и относительно целого ряда других движений (например, квазиравновесного движения [1] см. также 25).  [c.111]

Судомоев А. Д. О поведении пологой жесткопластической сферической оболочки при динамическом нагружении. Труды  [c.349]



Смотреть страницы где упоминается термин Динамическое нагружение сферической оболочки : [c.258]    [c.542]   
Смотреть главы в:

Теория идеально пластических тел и конструкций  -> Динамическое нагружение сферической оболочки



ПОИСК



Нагружение динамическое

Оболочка сферическая



© 2025 Mash-xxl.info Реклама на сайте