Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Открытие космических лучей

ОТКРЫТИЕ КОСМИЧЕСКИХ ЛУЧЕЙ  [c.279]

За открытие космических лучей Гесс в 1936 г. был удостоен Нобелевской премии.  [c.22]

Открытие электрона Открытие атомного ядра Открытие космических лучей Открытие частиц высоких энергий и ливней частиц в космических лучах Открытие нейтрона Открытие позитрона Открытие мюона  [c.267]

Открытие --мезонов (пионов). В послевоенные годы с новой силой возобновилось исследование элементарных частиц. В 1947 г. английский физик С. Пауэлл с сотрудниками на больших высотах над уровнем моря облучили космическими лучами ядерные фотопластинки, После проявления они обнаружили на пластинках треки заряженных мезонов с массой (200 300) /и,,. Дальнейшее более обстоятельное изучение показало, что треки принадлежат новым, неизвестным до сих пор частицам. Иа рисунке 24, а приведена схема движения н последовательного распада этой неизвестной (л ) частицы. При распаде этой частицы образуется мюон (р." ). Неизвестная частица была названа я -мезоном  [c.75]


Очевидно, что, кроме описанного процесса образования пары электронов с противоположными зарядами должен существовать и обратный процесс перехода электрона из области положительных энергий на свободный уровень в области отрицательных энергий. В этом процессе, названном аннигиляцией, одновременно исчезают обычный электрон и дырка , что в соответствии с законами сохранения энергии и импульса должно сопровождаться переходом энергии покоя обоих электронов в энергию излучения двух Y-квантов. Разумеется, термин аннигиляция (в переводе означает уничтожение ) нельзя понимать в буквальном смысле слова, так как никакого уничтожения материи и энергии не происходит, а имеет место превращение одних частиц (е+ и е-) в другие (у-кванты) и переход энергии из одной формы в другую. Открытие в 1932 г. Андерсоном позитрона в составе космических лучей блестяще подтвердило взгляды Дирака. Электрон и позитрон были названы соответственно частицей и античастицей.  [c.546]

В конце 40-х годов для исследования космических лучей стал широко применяться другой метод регистрации частиц — метод толстослойных фотографических пластинок, при помощи которого было открыто большинство новых частиц.  [c.557]

Частицу р, естественно отождествить с (х-мезоном, открытым еще в 1936—1938 гг. в опытах по изучению мягкой и жесткой компонент космических лучей. Частица я, при распаде которой образуется 1д,-мезон, была названа я-мезоном (пионом), а сам процесс распада—(я—(х)-распадом. При этом оказалось, что во всех зарегистрированных случаях (я—р,)-распада длина пробега вторичной частицы всегда равна 600 мкм. Это означает, что во всех случаях (я—р.)-распада вторичная частица испускается с одной и той же энергией Т . Подсчет по формуле (12.11) дает Мэе.  [c.132]

В 50-х годах при изучении в камере Вильсона космических лучей высоких энергий впервые была обнаружена частица, масса которой больше массы протона и нейтрона эта частица относится к группе так называемых гиперонов Я-частица. Она имеет массу, равную 2182 электронным массам, спин V2 и время распада 2,7-10 сек. Вскоре были открыты другие частицы, принадлежащие к той же группе сигма — положительная, отрицательная и нейтральная и кси с массой 2585. Группой ученых объединенного Института ядерных исследований была открыта тяжелая частица с массой 2300, получившая название анти-сигма-минус-гиперон , она распадается за 10 ° сек.  [c.449]

В 1938 г. подобные частицы были открыты в космических лучах и получили название (х-мезонов. Однако изучение их свойств показало, что и они не могут быть переносчиками ядерного взаимодействия, так как сами слабо взаимодействуют с ядерными частицами.  [c.9]


Только в 1947 г. Пауэллом в космических лучах были обнаружены ядерно активные частицы — я-мезоны с массой порядка 270 те, которые и являются квантами поля ядерных сил. Таким образом, было установлено, что в основе существования ядерных сил между нуклонами лежит взаимодействие через поле ядерных сил, квантами которого являются я-мезоны и некоторые другие, позже открытые виды мезонов.  [c.9]

В 1932 г. Андерсон открыл такой положительный электрон в космических лучах. Его назвали позитроном (е+). Это открытие явилось блестящим подтверждением теории, развитой Дираком.  [c.152]

Использование При изучении космических лучей ракет и искусственных спутников привело к новым открытиям — обнаружению радиационных поясов Земли. Возможность исследовать первичные космическое излучение за пределами земной атмосферы и создало новые методы изучения галактического и межгалактического пространства. Таким образом, исследования космических лучей, перейдя из области геофизики в область ядерной физики и физики элементарных частиц, сейчас теснейшим образом объединяют изучение строения микромира с проблемами астрофизики.  [c.280]

В связи с тем, что широкое развитие всесторонних исследований космических лучей имеет исключительно важное значение для дальнейших открытий в области использования внутриядерной энергии. Совет Народных Комиссаров Союза ССР ПОСТАНОВЛЯЕТ  [c.136]

Нынешний уровень знаний об атомном ядре и космических лучах позволяет предполагать, что при помощи частиц, ускоренных до энергии 250 миллионов вольт и выше, можно перейти к открытиям новых физических явлений (открытию новых элементов, новых способов получать атомную энергию из более дешевых источников, чем уран).  [c.406]

В Америке, Англии, Франции во время войны и по сегодняшний день практикуется частичное засекречивание научных результатов. Большое число исследований по ядру и космическим лучам публиковалось в основных научных журналах и происходили открытые научные конференции. Несомненно вместе с тем, что особо важные практические результаты хранились и хранятся в тайне.  [c.450]

Существование первых четырех фундаментальных частиц электрона, протона и нейтрона, из которых построены атомы, и частицы света фотона — было установлено в классических экспериментах по атомной и ядерной физике. Их открытие, завершившееся в 1932 г. обнаружением нейтрона, можно считать началом физики частиц. Дальнейшее ее развитие в течение приблизительно двух десятилетий неразрывно связано с исследованием космических лучей, позволившим сделать ряд открытий принципиального значения. Новый период в физике частиц начался с 50-х годов, когда экспериментальные исследования стали проводиться преимущественно с использованием ускорителей высокой энергии.  [c.14]

Странные частицы, как и тг-мезоны, были открыты в космических лучах, но их систематическое исследование осуществлялось уже с помощью ускорителей высоких энергий.  [c.42]

В 1937 г. К. Андерсон и С. Неддермейер открыли в составе космических лучей 1-частицы ( л , с массой около 200 электронных масс, эти частицы были названы мю-мезонами. Сразу же была обнаружена нестабильность fi-частиц, время их жизни составляет 2,2-UF сек. Несколькими годами раньше (1933) было открыто явление превращения жесткого гамма-кванта в пару электрон—позитрон ( рождение пар ) и обратное явление превращения пары электрон—позитрон в жесткие гамма-кванты ( исчезновение пар ). В этих явлениях физика встретилась с новой очень важной проблемой— с проблемой взаимопревращаемости элементарных частиц.  [c.12]

Открытие ] .-мезонов (а-частиц). Продолжая исследовать космические лучи методом камеры Вильсона, К- Андерсон и С. Неддер-мейер в 1937—1938 гг. получили фотографии треков заряженных частиц с массой около 200 т . Так как масса обнаруженной частицы больше массы электрона т,.. но меньше массы протона Шр, то частица была названа мезоном (це стоС — средний). Для отличия от других мезонов позднее эта частица была названа ц-мезо-н о м или мюоном.  [c.74]

В 1938 г. при изучении состава космических лучей был открыт и-мез0 Н — частица с массой 207 Ше и временем жизни около 2-il0 сек. Изучение свойств .1-мезона показало, что он-является ядернопассивной частицей и поэтому не может быть ядерным квантом. Ядерная пассивность и малое время жизни а-мезонов позволили предсказать существование в составе космических лучей других, более тяжелых частиц — я-мезонов, которые и были открыты Пауэллом в 1947 г. При изучении я-мезонов выяснилось, что они встречаются в виде я+-, л - и л°-мезонов, масса их  [c.23]


Пятидесятые годы были ознаменованы бурным развитием новых, весьма совершенных методов регистрации частиц — методов эмульсионной камеры и пузырьковой камеры. С их помощью сначала в составе космических лучей, а затем и в пучках частиц, выведенных из ускорителей, были обнаружены новые нестабильные частицы /С-мезоны с массой 966 Ше и гипероны с массой, превосходящей массу нуклона. Триумфом ядерной физики последних лет было обнаружение антипротона, антинейтрона и других античастиц проведение прямого опыта, доказывающего существование нейтрино изучение структуры нуклонов, обнаружение несохранения четности в слабых взаимодействиях и открытие эффекта Мёссбауэра.  [c.24]

В 1938 г. в составе космических лучей была открыта новая элементарная частица,. получившая название ц-мезон. В резуль тате исследования свойств ц-мезонов было установлено, что они бывают положительные и отрицательные, имеют массу 207те и примерно через 2-10 сек распадаются на электрон и 2 нейтрино .  [c.53]

Первыми (1938 г.) были открыты в составе космических лучей мюоны ( 1+ и pL ) — самые тяжатые 207 flig) представители класса лептонов. Мюоны являются ядерно пассивными нестабильными частицами, которые за время t Ю" сек слабым образом распадаются на более легкие лептоны  [c.699]

История открытия ядерных квантов очень интересна и поучительна. Вначале было сделано неправильное заключение о том, что ими являются обнаруженные в 1938 г. в составе космических лучей 11-мезоны (мюоны)—частицы с массой т = 207 т е. Однако вскоре выяснилось, что мюоны не участвуют в сильном ядерном взаимодействии (подробнее о свойствах мюонов см. 11). Позднее (1947—1950 гг.) сначала в составе космических лучей, а затем и на ускорителях были обнаружены пионы, или я-мезоны (я+, п и я ) — оильновзаимодействующие частицы из класса мезонов с барионным зарядом В = 0, массой т 270т е, изоспином Т=1, спином 8 = 0 и отрицательной внутренней четностью Р =—1.  [c.11]

Несколько случаев, напоминающих образование антипротонов, было зарегистрировано с помощью камеры Вильсона и фотоэмульсий, облученных космическими лучами до открытия антипротона на ускорителе. Однако интерпретация этих случаев Йыла неоднозначна.  [c.218]

Первыми (1938 г.) были открыты в составе космических лучей мюоны (f и )А") —самые тяжелые т 207т,) представители  [c.321]

Открытие пионов было началом интенсивных исследований. Одна за другой обнаруживались все новые и новые частицы 1947 г.— /Г-мезоны, или каоны 1951 г.— лямбда-гипероны Л 1953 г.— сигма-гиперон 2 (в космических лучах), он же был открыт в 1974 г. в реакциях на ускорителе протонов в Брукхей-вене (США) и т. д. Список элементарных частиц стал очень быстро пополняться. Подробно об этих исследованиях превосходно рассказано в ряде книг (см., например, [92]).  [c.185]

Драматична история открытия позитрона и его аннигиляции. Началась с того, что Дирак в 1928 г. предложил для описания движения релятивистского квантового электрона замечательное уравнение, которое удивительно хорошо без всяких эмпирических констант описывало все известные тогда тонкие детали спектра атома водорода. Вскоре, однако, было подмечено, что уравнение Дирака имеет лишние решения, соответствующие отрицательным массам и энергиям электрона. Существование же отрицательных масс явно невозможно, так как в этом случае частица двигалась бы против силы и, например, диполь из двух частиц с разными по знаку массами саморазгонялся бы. Эти лишние решения не удавалось Очеркнуть, не портя уравнения и ряда проверенных на опыте выводов из него. Тогда Дирак в 1930 г. выдвинул идею, потрясшую его современников. Он воспользовался принципом Паули и принял, что вакуум — это такое состояние, в котором заполнены все состояния электрона с отрицательной энергией. В этом случае переход электрона в состояние с отрицательной энергией невозможен. Если же вырвать вакуумный электрон из состояния с отрицательной энергией, то образуется электрон с положительной энергией и дырка на бесконечном фоне заполненных состояний. Можно показать, что такая дырка будет вести себя как частица с положительной массой (энергией) и с положительным зарядом. Дирак поначалу отождествил эту дырку с протоном. Но ему вскоре указали, что, во-первых, масса дырки должна быть строго равной массе электрона, а, во-вторых, дырка будет аннигилировать при столкновении с электроном. Тогда Дирак объявил, что предсказываемая им дырка представляет собой новую еще не открытую элементарную частицу. В эпоху, когда элементарных частиц было известно всего три, такое предсказание было столь смелым, что в него не поверили даже авторы монографий того времени, посвященных уравнению Дирака. Но вскоре (С. Д. Андерсон, 1932) позитрон был открыт в космических лучах,  [c.338]

С 30-х годов значение крупнейшего центра физической науки в Советском Союзе приобрел Ленинградский физико-технический институт (ЛФТИ), реорганизованный из Физико-технической лаборатории НТО ВСНХ и до 1951 г. возглавлявшийся акад. А. Ф. Иоффе — основателем одной из ведущих советских физических школ. В этом институте начинали свою научную деятельность многие известные ученые. В нем были выполнены фундаментальные работы в области ядерной физики изучение свойств и структуры атомных ядер, исследование ядерных реакций и космических лучей, открытие явления ядерной изомерии и пр. По инициативе и при участии его сотрудников были организованы физико-технические институты в Харькове (1930 г.), Свердловске (1932 г.) и других городах под непосредственным руководством И. В. Курчатова в 1937 г. в Ленинградском радиевом институте был введен в действие первый на Европейском континенте электромагнитный резонансный ускоритель заряженных частиц—циклотрон (рис. 41) на  [c.150]

ВИЛЬСОНА КАМЕРА — трековый детектор частиц. Создан Ч. Вильсоном в 1912 [1]. С помощью В. к. сделан ряд открытий в ядерной физике, физике элементарных частиц. Наиб, впечатляющие из них связаны с исследованиями космических лучей, открытие и1ироких атм. ливней (1929, [2]), позитрона (1932, [Я]), обнаружение следов мюоное [4 , открытие странных частиц  [c.278]


С помощью Д. д. были идентифицированы трансурановые злементы от /1 = 103 до Л =107, открыты явления запаздывающего деления ядер из изомерных состояний, деления ядер на 3 осколка, в космических лучах обиаружены ядра тяжелее Fe.  [c.703]

До 1930-х гг. для описания наблюдаемых фиэ. явлений достаточно было рассматривать гравитац. и зя,-магн. взаимодействия. Первые играют решающую роль в явлениях космич. масштабов, а вторые ответственны за строение атомов, молекул и за всё многообразие внутр. свойств твёрдых тел, жидкостей и газов. Наличие С. в. проявилось, когда была открыта сложная структура атомных ядер, состоящих из протонов и нейтронов (нуклонов). Эксперимент показывал, что взаимодействие между нуклонами гораздо сильнее электромагнитного, поскольку типичные анергии связи нуклонов в ядрах порядка неск. МэВ, в то время как энергии связи в атомах порядка неск, зВ, Кроме того, эти силы, в отличие от электромагнитных и гравитационных, обладают малым радиусом действия см. В квантовой теории радиус действия сил обратно пропорционален массе частиц, обмен к-рыми обусловливает взаимодействие. Поэтому X. Юкава (Н. Yukawa) в 1935 высказал предположение о существовании тяжёлых квантов — мезонов, переносчиков С. в. В 1947 в космических лучах были открыты первые, ваиб. лёгкие из таких частиц — л-мезоны.  [c.497]

Когда Юкава высказал свою гипотезу о существовании частицы с массой 300 /Пе, были известны только протоны, электроны и нейтроны. Через два года при исследовании космических лучей была открыта частица, названная впоследствии м -мезоном. Были "Ьбнаружены ц-мезоны, заряженные положительно и отрицательно. Оказалось, что их масса /Пд =207 /Пе, спин равен /2- Время жизни Покоящегося ц-мезона тд=2,2 10- сек. Он распадается по схеме  [c.81]

При исследовании космических лучей было сделано много принципиально важных открытий. Так, в 1932 г. Андерсоном был открыт в космических лучах позитрон, предсказанный теорией Дирака. В 1937 г. Андерсоном и Нидермайером были открыты ц-мезоны и указан тип их распада. В 1947 г. Пауэллом были открыты п-мезоны, которые согласно теории Юкава были необходимы для объяснения ядерных сил. В 1955 г. было установлено наличие в космических лучах К-мезонов, а также тяжелых нейтральных частиц с массой, превышающей массу протона — гиперонов. Исследования космических лучей привели к необходимости введения квантовой характеристики, названной странностью. Опыты с космическими лучами также поставили вопрос о возможности несохранения четности. В космических лучах впервые были обнаружены процессы множественной генерации частиц в одном акте столкновения.  [c.280]

По утверждению наших ученых, академиков Курчатова, Вавилова, Алиханова, профессоров Скобельцына, Арцимовича и других, нынешний уровень знаний об атомном ядре и космических лучах позволяет предполагать, что при помощи частиц, ускоренных до энергии 250 миллионов вольт и выше, можно перейти к открытиям новых физических явлений (открытию новых элементов, новых способов получать атомную энергию из более дешевых источников, чем уран).  [c.296]

Вскоре после открытия тг-мезопов, которое, как тогда многим казалось, решило вопрос о составе космических лучей, в том же 1947 г. английские физики Дж. Рочестер и К. Батлер обнаружили с помощью камеры Вильсона частицы нового типа. На одной из полученных ими фотографий (рис. 2.14) видны две заряженные частицы, исходящие из одной  [c.41]

Открытие электронпо-ядерных ливней позволило попять общую схему процессов, происходящих в космических лучах, и определяющую роль в них ядерных взаимодействий высоких энергий. Первичные частицы образуют в верхних слоях атмосферы электронно-ядерные ливни (при этом опи теряют в одном акте взаимодействия лишь часть своей энергии, сохраняя способность создавать последовательно еще некоторое количество таких Ливией). Заряженные тг-мезоны, рожденные в этих процессах, либо создают вторичные электронпо-ядерные ливни, участвуя в образовании каскада ядерных взаимодействий высоких энергий, либо распадаются, создавая мюоны, т. е. частицы жесткой компоненты, а также нейтрино, тг -мезоны, распадаясь, дают начало электронно-фотонным каскадам, образующим мягкую компоненту. Вблизи уровня моря ядерные каскады практически иссякают, а энергия и интенсивность электронно-фотонной компоненты значительно ослабевают. В то же время мюопы проникают в глубь земли (или воды) на много метров, а нейтрино проходят сквозь всю толщу земного шара, почти не поглощаясь.  [c.45]

После открытия позитрона, подтвердившего теорию Дирака, возник вопрос, применима ли эта теория к барионам, а значит, существуют ли антибарионы Теория отвечала на этот вопрос положительно, однако поиски антипротонов в космических лучах пе привели к успеху, более того, была установлена барионная асимметрия Вселенной. Так существуют ли антипротоны и другие антибарионы Это был вопрос принципиальный.  [c.65]


Смотреть страницы где упоминается термин Открытие космических лучей : [c.12]    [c.99]    [c.384]    [c.230]    [c.671]    [c.597]    [c.79]    [c.27]    [c.103]   
Смотреть главы в:

Ядерная физика  -> Открытие космических лучей



ПОИСК



Космические лучи

Открытие

Открытые

Х-лучи



© 2025 Mash-xxl.info Реклама на сайте