Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бесконечно малые изгибания поверхностей и устойчивость оболочек

Рассматривая вопрос о закритических деформациях выпуклых оболочек мы пришли к выводу о возможности, а затем и целесообразности приближения этих деформаций изометрическими преобразованиями исходной формы оболочки. В результате вопрос об определении закритических упругих состояний выпуклых оболочек сведен к рассмотрению вариационной задачи для функционала W, который определен на изометрических преобразованиях срединной поверхности оболочки (вариационный принцип А). Общие соображения, которыми мы при этом пользовались, в известной степени применимы к исследованию начальной стадии закритической деформации непосредственно после потери устойчивости. Такое исследование мы проведем в настоящем параграфе. Его итогом будет вариационный принцип В, согласно которому исследование потери устойчивости, в частности определение критической нагрузки, сводится к вариационной задаче для некоторого функционала, который мы снова будем обозначать W, определенного на разрывных бесконечно малых изгибаниях исходной формы оболочки.  [c.70]


Критическая нагрузка и форма потери устойчивости оболочки вращения отрицательной гауссовой кривизны существенно зависят от того, обеспечивают ли тангенциальные граничные условия отсутствие бесконечно малых изгибаний срединной поверхности. Предположим сначала, что изгибаний нет. Тогда, как следует из (3.6.15), показатель изменяемости дополнительного напряженного состояния при потере устойчивости t = 1/3, и можно воспользоваться системой уравнений пологих оболочек (4.3.1), которую запишем в виде  [c.210]

Изложение геометрической теории устойчивости выпуклых упругих оболочек, опирающейся на основн 1е факты хеории конечных и бесконечно малых изгибаний поверхностей. В книге содержится ряд новых результатов, полученных в последние годы.  [c.2]

Предлагаемая книга содержит популярное изложение геометрической теории устойчивости упругих оболочек, основанной на некоторых результатах теории конечных и бесконечно малых изгибаний поверхностей. Наряду с известными результатами, содержащимися в монографии автора Геометрические методы в нелинейной теории упругих оболочек , в книгу вошли результаты исследований, выполненных в последние годы. В частности, здесь содержится полное решенйе задачи об устойчивости сферических оболочек ПОД внешним давлением без каких-либо предположений о характере выпучивания. В рамках принятой математической модели явления дано полное исследование потери устойчивости общей строко выпуклой оболочки, защемленной по краю, под внешним давлением. Рассмотрен вопрос о потере устойчивости цилиндрических оболочек при осевом сжатии и оценено влияние различных факторов на критическую нагрузку. Рассмотрены и другие вопросы. В отличие от упомянутой выше монографии здесь мы ограничиваемся сравнительно небольшим числом классических задач о потере устойчивости оболочек, но исследуем их более полно.  [c.4]

Идея состоит в следующем. Представим себе выпуклую оболочку, которая нагружена внешним давлением. Опыт показывает, что при потере устойчивости оболочки под такой нагрузкой происходит четко выраженное выпучивание некоторой области О на поверхности оболочки. Пока форма оболочки еще достаточно близка к исходной, мы будем апроксимировать ее бесконечно малыми изгибаниями внутри области О и вне этой области. Если оболочка жесткая, т. е. ее срединная поверхность как целое не допускает бесконечно малых изгибаний, изгибающие поля внутри области С и вне ее должны быть различны, т. е. на границе области О должен быть разрыв изгибающего поля. Для того чтобы аппроксимировать форму оболочки в целом при рассматриваемой деформации, мы  [c.70]



Смотреть главы в:

Изгибания поверхностей и устойчивость оболочек  -> Бесконечно малые изгибания поверхностей и устойчивость оболочек



ПОИСК



Бесконечно малые изгибания поверхностей

Изгибание

Изгибание поверхности

Оболочка Устойчивость



© 2025 Mash-xxl.info Реклама на сайте