Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контактные задачи для цилиндрических тел конечных размеров

Гл. 2. Контактные задачи для цилиндрических тел конечных размеров  [c.52]

Задачи о равновесии бесконечного кругового цилиндра и круглой плиты под действием нормальных нагрузок рассматривались, например, в [1]. Контактная задача для бесконечного кругового цилиндра, по-видимому, впервые поставлена в [2]. Дальнейшее существенное развитие и исследование эта задача получила в [3 5]. Контактная задача для упругого пространства с бесконечной цилиндрической круговой полостью изучалась в [4-6]. Обзор многих других работ, посвященных контактным задачам для цилиндрических тел, дан в [7]. Задача о взаимодействии упругого цилиндра с упругим бандажем рассматривалась в [4, 6, 8]. Эффективные методы решения контактных задач для тел конечных размеров и, в частности, для круглой плиты предложены в [9-14].  [c.81]


К первой группе относятся контактные задачи для тел конечных размеров канонической формы, граничные поверхности которых совпадают с координатными поверхностями цилиндрических, декартовых, полярных, биполярных и сферических координат. Ко второй группе относятся контактные задачи для тел конечных размеров неканонической формы, когда часть граничных поверхностей не является координатной поверхностью (декартовы и цилиндрические координаты). К третьей группе относятся контактные задачи для полубесконечных тел (полоса, цилиндр) периодической структуры. И к четвертой группе относятся плоская и пространственные контактные задачи для слоя.  [c.22]

Глава 5 посвяш,ена развитию метода однородных решений в контактных задачах для тел конечных размеров сложной неканонической формы. Показывается, что использование однородных решений на кривых, отличных от координатных, требует привлечения сушественно более сложных численных методов, в частности, алгоритмов Ремеза нахождения наилучшего приближения. Исследованы в декартовых координатах контактные задачи для конечного тела в форме криволинейной трапеции (задачи N, N2, Щ) и в цилиндрических координатах для конечного тела вращения с криволинейной образующей (задача N4).  [c.18]

Контактные задачи для тел конечных размеров канонической формы, в цилиндрических координатах (г, <р, z) рассмотрены осесимметричные контактные задачи для цилиндра, когда штампы взаимодействуют, либо с плоской либо с цилиндрической его поверхностью.  [c.23]

Глава 2 посвящена решению осесимметричных контактных задач для цилиндрических тел конечных размеров канонической формы, когда штамп воздействует на плоскую или цилиндрическую части их границы. Для решения задач применяется метод сведения парных рядов-уравнений к БСЛАУ первого рода с сингулярной матрицей с последующей регуляризацией (п. 1.2.1) и метод однородных решений. Метод однородных решений позволяет свести задачи к решению БСЛАУ второго рода типа Пуанкаре-Коха с экспоненциально убывающими элементами матрицы и правой части и хорошо изученным ИУ для слоя с различными правыми частями. Как известно, решение таких бесконечных систем может быть получено при любых значениях параметров методом редукции.  [c.14]


Естественно, что основная часть опубликованных работ, в которых рассматривались контактные задачи для тел конечных размеров, посвяш,ена проблемам для канонических тел в наиболее распространенных ортогональных системах координат прямоугольных декартовых, цилиндрических, полярных, сферических, биполярных, бисферических и др.  [c.157]


Смотреть главы в:

Аналитические методы в контактных задачах теории упругости  -> Контактные задачи для цилиндрических тел конечных размеров



ПОИСК



117 —-Размеры цилиндрические

2 — 147, 161, 162 — Размеры цилиндрические — Размеры

Задачи для цилиндрических тел

Контактная задача



© 2025 Mash-xxl.info Реклама на сайте