Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Датчики силы — Материалы упругих элементов

Чем больше модуль упругости Е материала упругого элемента, тем большие силы могут измеряться при заданной номинальной деформации упругого элемента. Малые значения Е представляют интерес для датчиков, рассчитанных на малые силы.  [c.353]

Индуктивный датчик работает в режиме нуль-индикатора. Поэтому его погрешности, практически, равны нулю. Погрешности коэффициента преобразования силовозбудителя могут быть сведены к весьма малым величинам и не превысят сотых или десятых долей процента. Погрешности от упругих несовершенств материала упругих элементов также могут быть не более сотых долей процента. Таким образом, общая погрешность измерения силы таким датчиком может быть оценена не более нескольких десятых долей процента.  [c.387]


В последнее время нашли применение датчики силы, основанные на принципе магнитной анизотропии, т. е. изменения магнитных свойств материала при сжатии его в разных осевых направлениях. Такой датчик стационарно устанавливается в приводе, а его сигнал воспринимается вторичным измерительным устройством. Наиболее широкое применение в силоизмерительной аппаратуре получил тензометрический метод измерения на основе полупроводниковых или металлических тензорезисторов. Наклеенные на упругий элемент, они меняют омическое сопротивление при деформации поверхности этого элемента. Например, два датчика равного сопротивления наклеиваются на деталь, воспринимающую усилие сжатия. Такой деталью может быть электрододержатель, который играет роль упругого элемента сжатие—растяжение. Если датчики наклеиваются на нижнюю консоль, то последняя используется как упругий элемент деформации изгиба. Один из датчиков наклеивается вдоль направления усилия, второй — перпендикулярно к нему. Первый датчик реагирует на возможную деформацию, а второй датчик является термокомпенсирующим элементом, так как в процессе сварки упругий элемент нагревается (за счет сварочного тока), а изменение сопротивления за счет разогрева датчика не должно восприниматься как измерительное. Тензодатчики включаются в плечи измерительного моста. К одной диагонали моста подключается источник стабильного напряжения, с другой его диагонали сигнал через нормирующий усилитель подается на измерительный или записывающий прибор. Мост первоначально балансируется резисторами, включенными в другие плечи моста, поэтому выходной сигнал во время измерения будет пропорционален только силе сжатия или изгиба. Кривая выходного напряжения первоначально тарируется по стандартным динамометрам. На основе тензорезисторов строят выносные датчики, внутри которых обычно имеется упругий элемент изгиба. Такие датчики могут устанавливаться между электродами и вне их.  [c.226]

Предел упругости а — напряжение, до которого можно нагружать упругий элемент без возникновения в нем остаточных деформаций. Для обеспечения достаточно большой перегрузки датчика силы материал упругого элемента должен обладать возможно большим jfi/Of- шах- На практике заменяют несколько большей величиной Ста — напряжением, при котором после снятия нагрузки остаточная относительная деформация равна е . Обычно берут 0 при е = 0,01 (сго.и)  [c.353]

Применение таких структур (модулей), помимо значительного упрощения монтажа и сокращения числа контактов на полупроводнике (что повышает стабильность во времени), снижает погрешность от упругих несовершенств материала упругого элемента датчика силы. Использование этих модулей дает примерно такой же эффект миниатюризации, как применение планарных интегральных тенэомостов.  [c.366]


Применительно к машине на рис. 4, б элементы динамической схемы соответствуют — приведенной массе инерционных грузов 4 — жест-1ЮСТИ на изгиб балки 3 резонатора Ri — внутреннему сопротинлению в материале балки 3 и трению в соединениях между якорем 8, скобой 5, центральной частью балки 3 и захватом 9] ш, — приведенной массе якоря 8 возбудителя колебаний, части скобы 5, центральной части балки 3 резонатора и захвату 9 и Rg — соответственно жесткости и внутреннему сопротивлению материала образца, Сц п R соответственно жесткости и внутреннему сопротивлению упругого элемента датчика 11 силы — суммарной массе станины /, колонн 2, верхней траверсы 6 и возбудителя 7 колебаний и — соответственно жесткости и сопротивлению огюр (па рис. 4, 6 не показаны). Переменная сила электромагнитного возбудителя колебаний приложена к — захвату 9 (к центральной части балки 3 резонатора), и колебания резонатора возбуждают через заделку его упругого элемента.  [c.38]

Целью расчета упругих элементов является увязка требуемых измерительных параметров (например, номинальной измеряемой силы, номинальной деформации, номинального хода для преобразователя) с основными геометрическими размерами и параметрами материала (постоянными упругости, максимально допустимыми напряжениями), с учетом действия неизмеряемых сил, т. е. действующих под углом к оси датчика.  [c.359]

Разработаны датчики силы, в которых используется стержневой резонатор, обладающий высокой из-гибной жесткостью и работающий поэтому без предварительного натяжения. С целью исключения влияния заделок на стабильность частоты поперечных колебаний стержень выполняют как единое целое с упругим элементом из одного куска материала. Возможно также изготовление стержневых модулей с развитыми концами с последующим креплением их на упругом элементе датчика сваркой. Такие датчики известны как. вибростержневые.  [c.363]

При исследовании деформаций больших фланцев сосудов высокого давления в качестве основных расчетных элементов при составлении расчетной схемы фланца используют оболочку, жесткое кольцо балку. При нагружении таких сосудов типичной является ситуация, когда на узкие грани фланцев, сжимающие прокладку, действует со стороны прокладки момент сил реакции, довольно большой по сравнению с моментом от со-единительньцс шпилек, и поэтому требуется точно знать распр еделение сил реакции по радиусу. Расчетная схема, использующая оболочечйый элемент, позволяет приближенно учесть этот факт. Но есть еще однО обстоятельство, которое не учитывается при использовании указанного набора базисных элементов ), — это пластическая деформация прокладки. Из-за нее расчеты, основанные на линейно-упругой модели материала, могут стать неэффективными с другой стороны, применение базисного элемента в виде жесткого кольца может внести неточность в описание общего упругого поведения колец фланцев. Настоящая глава посвящена выяснению этих вопросов. С этой целью в ней проанализировано поведение узких фланцев двух разновидностей, типичных для фланцев реакторов с водой под давлением (ВВЭР), при помощи метода конечных элементов (упругих и упругопластических). Результаты расчетов сравниваются с вычислениями по расчетной схеме, использующей упомянутые выше базисные элементы, и с экспериментальными результатами. Экспериментальные данные о локальных деформациях прокладки получены с помощью специального оптического устройства, луч которого пропускался через канал для определе ния утечки во фланце силового корпуса ВВЭР. Для определения поворотов фланцев применялись тензодатчики, расположенные на силовых корпусах ВВЭР кроме того, датчики были наклеены и на шпильках.  [c.9]


Смотреть страницы где упоминается термин Датчики силы — Материалы упругих элементов : [c.364]    [c.354]    [c.361]    [c.304]    [c.107]   
Испытательная техника Справочник Книга 2 (1982) -- [ c.358 ]



ПОИСК



Датчик

Датчики силы

Материал для упругих элементов

Материалы упругие

Сила упругая

Сила упругости

Элементы Материалы



© 2025 Mash-xxl.info Реклама на сайте