Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статическая и геометрическая краевые задачи безмоментной теории

Статическая и геометрическая краевые задачи безмоментной теории  [c.109]

В рассматриваемых случаях полная краевая задача безмоментной теории сводится к последовательному решению статической и геометрической задач безмоментной теории ( 7.7). Статическая задача, рассмотрением которой мы пока и ограничимся, заключается в определении тангенциальных усилий ТI, S, из безмоментных уравнений равновесия с учетом статического граничного условия. Оно для случаев (17.30.1) и (17.30.2) записывается соответственно так  [c.245]


Примем снова, что имеется купол, на кр-аю которого ставятся одно статическое и одно геометрическое тангенциальные граничные условия, и рассмотрим для него полную краевую задачу безмоментной теории. Она заключается в решении головной системы безмоментных уравнений ( 7.8) с учетом обоих тангенциальных граничных условий, и в данном случае его удобно разбить на три этапа.  [c.258]

Если невозможно выполнить этап 1, т. е. если не существует решения безмоментной статической задачи, то, очевидно, не существует и решения полной краевой задачи безмоментной теории. Это произойдет тогда, когда тангенциальное геометрическое граничное условие допускает изгибания срединной поверхности, а работа внешних сил на перемещениях таких изгибаний отлична от нуля, т. е. когда нарушатся условия теоремы о возможных изгибаниях.  [c.258]

Если на обоих краях оболочки в тангенциальных направлениях ставится одно статическое и одно геометрическое граничные условия, то формулировка теорем существования решений полной краевой задачи безмоментной теории зависит от знака кривизны срединной поверхности. Для оболочки всюду положительной кривизны сохраняются теоремы существования решений безмоментных краевых задач, подобные тем, которые формулировались в в 17.31, 17.32. Однако для оболочек отрицательной кривизны получаются непривычные результаты покажем их на примере оболочки, имеющей форму одно полостного гиперболоида вращения.  [c.263]

Случай II. Равенство (18.37.8) при выбранном k выполняется. Тогда получатся алгебраические системы уравнений с одинаковым нулевым определителем. Для разрешимости систем, отвечающих статической задаче, надо на внешнюю нагрузку наложить два условия, вытекающие из вышеприведенных рассуждений. При выполнении их статическая задача будет иметь решение, зависящее от двух констант (i = 1, 2). Последние попадут в конечном итоге в правые части систем, отвечающих геометрической задаче. Определители этих систем равны нулю, но можно подобрать так, чтобы системы были разрешимы. Это значит, что решение полной краевой задачи безмоментной теории существует и в случае II, но оно будет определяться с точностью до бесчисленного множества тех изгибаний, которые имеет срединная поверхность при выполнении (18.37.8).  [c.266]

Если поставлено геометрическое граничное условие, выражающее отсутствие перемещений в некотором направлении р в каждой точке края, то будем говорить, что оболочка имеет закрепление в направлении р. Кроме того, будем говорить, что решение статической безмоментной теории порождается поверхностными и краевыми силами, первые из которых определяются свободными членами уравнений равновесия, а вторые — свободными членами граничного условия. Тогда теореме 1 можно дать простое физическое толкование. Если в геометрической безмоментной задаче закрепление в направлении п не препятствует изгибанию (v) срединной поверхности, то статическая безмоментная задача, в которой на краю задается тангенциальное усилие в направлении I, ортогональном п, может иметь решение только тогда, когда равна нулю работа сил, порождающих это решение, на перемещениях изгибания (v).  [c.111]


Замечание 2. Если в каждой точке края ставится одно тангенциальное статическое граничное условие, заключающееся в требовании, чтобы тангенциальная краевая сила Pi имела заданное значение, и одно геометрическое граничное условие, заключающееся в требовании, чтобы тангенциальное смещение Vn имело заданное значение, то полная безмоментная задача, в сущности, представляет собой соединение статической безмоментной задачи и геомй риче-ской безмоментной задачи. Действительно, в этом случае можно сначала найти Tj, S, Т , интегрируя статические безмоментные уравнения совместно со статическим граничным условием, а затем выразить (алгебраически) ш, Ej через Т , S, Т , при помощи уравнейий состояний. и, наконец, найти перемещения и , Uj, w, интегрируя геометрические безмоментные уравнения совместно с геометрическим граничным условием. Вместе с тем, легко указать на случаи, когда такое разделение станет невозможным. Это будет, например, в том случае, когда оба граничных условия — геометрические. Тогда целесообразно говорить о полной краевой Задаче безмоментной теории, не расчленяя ее на статическую и геометрическую задачи.  [c.112]


Смотреть страницы где упоминается термин Статическая и геометрическая краевые задачи безмоментной теории : [c.155]   
Смотреть главы в:

Теория упругих тонких оболочек  -> Статическая и геометрическая краевые задачи безмоментной теории



ПОИСК



I краевые

Геометрическая задача

Геометрические статические

Задача краевая

Задача статическая

Краевой статическая

Теория безмоментная

Теория геометрическая

Теория статическая



© 2025 Mash-xxl.info Реклама на сайте