Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние размера зерна на скорость ползучести

Влияние размера зерна на скорость ползучести  [c.79]

Рис 188 Влияние размера зерна на скорость ползучести Wj,  [c.317]

Справедливость второго предположения (о том, что воздушная среда может усиливать скольжение по границам зерен) подтверждается сравнительным исследованием ползучести суперсплава на никелевой основе, упрочненного за счет высокого объемного содержания фазы у на воздухе и в вакууме при 760 °С [172]. Размеры зерна и образца изменялись в этом случае независимым образом. В исследованной системе, где границы зерен практически не содержали упрочняющих карбидов, наблюдалось усиление ползучести на воздухе. Как и следовало ожидать, образцы с более крупным зерном (275 мкм) оказались более стойкими к ползучести на воздухе, чем мелкозернистые (100 мкм) образцы. Напротив, при испытаниях в вакууме скорость ползучести практически не зависела от размера зерна. Это согласуется с представлением об усилении скольжения по границам зерен, вызванном проникновением воздуха. Последнее подтверждается также наблюдениями сдвига границ зерен, согласно которым вклад проскальзывания по границам зерен в полную величину деформации па воздухе больше, чем в вакууме. Интересно, что для образцов того же сплава, состаренных с целью образования выделений карбидов по границам зерен, усиление ползучести на воздухе уже не наблюдалось напротив, на воздухе сплав упрочняется. Эти результаты можно объяснить, основываясь на представлении об упрочняющем влиянии поверхностной окалины, которое должно быть эффективным,  [c.39]


При сравнительно высоких температурах, когда механизм ползучести обусловлен диффузией, зависимость скорости ползучести от диаметра зерен становится более явно выраженной скорость ползучести снижается при увеличении размера зерна. При ползучести, рбусловленной диффузией по узлам кристаллической решетки (ползучести Набарро—Херринга), ос ld , а при ползучести, обусловленной диффузией по границам зерен (ползучести Кобла) ос 1/d в последнем случае влияние диаметров проявляется в большей степени. На карте механизмов деформации, показанной на рис. 1.1, линия, разграничивающая дислокационную и диффузионную ползучесть, при уменьшении диаметров зерен смещается в сторону более высоких напряжений [28].  [c.79]

Скорость ползучести и длительная прочность. Результаты сравнительных исследований показывают, что эти свойства материала находятся во взаимнообратной зависимости, что согласуется с исходными представлениями о деформационном или псевдо-деформационном контроле разрущения, находящими свое выражение в соотнощениях типа (3). В то же время влияние окружающей среды само по себе оказывается связанным с наличием на поверхности металла оксидной пленки (окалины) с хорощей адгезией. Отметим, что отсутствие такой пленки может быть обусловлено проведением испытаний не только в вакууме, но и в агрессивных средах, активно разрушающих окалину. Кроме того, влияние внещней оксидной пленки становится менее существенным по мере уменьщения размера зерна или при возрастании роли какого-либо другого внутреннего фактора.  [c.18]

Независимое изменение размеров зерна и образца в работе [172] позволило строго исследовать влияние на ползучесть такого параметра, как число зерен в поперечном сечении образца. Какой-либо четкой корреляции между этим параметром и скоростью ползучести ни на воздухе, ни в вакууме не наблюдалось. Однако в обеих средах почти при всех размерах зерна толстые образцы были более стойкими к ползучести, чем тонкие. При испытаниях на воздухе это явление можно объяснить возрастанием в случае тонких образцов относительного числа зерен на поверхности и, следовательно, вклада зернограничиых каналов для проникновения воздуха в материал. Этот эффект прямо конкурирует с упрочняющим влиянием окалины, которая способствует повышению сопротивления ползучести тонких образцов [115]. В то же время в случае вакуума более высокая стойкость толстых образцов к ползучести согласуется с представлением о наличии принципиально непрочного поверхностного слоя. В вакууме (10 торр) внешняя поверхность образца или детали ко] струкции покрыта адсорбированными газами, но не имеет окалины, поэтому может быть по природе менее стойкой, чем материал объема, например просто из-за отсутствия геометрических препятствий ползучести.  [c.40]


Наиболее важная микроструктурная- перестройка, которая происходит в процессе ползучести, заключается в образовании разориентированных субзерен (полигонизация), разделенных стенками дислокаций. Стенки образу ются от перераспределения геометрически необходимых дислокаций, которые согласовывают пластические несовместимости между зернами или между образцом из монокристалла и наковальнями. Субзерновая структура находится в состоянии динамического развития. Образующиеся стенки дислокаций мигрирует под действием напряжения и разрушаются. Резо-риентация стенок увеличивается с ростом деформации до тех пор, пока в результате их вращения без миграции не установится рекристаллизован-ная зерновая структура. При более высоких значениях напряжения и температуры увеличиваются силы, вызывающие миграцию границ, а также их подвижность, и границы могут мигрировать. Размер как субзерен, так и рекристаллизованных зерен зависит от приложенного напряжения и уменьшается по мере его возрастания. Эмпирические соотношения между размером зерен или субзерен и напряжением устанавливаются экспериментально и используются для того, чтобы восстановить напряжение, которое вызвало естественное деформирование горных пород. Однако представление о том, что размер субзерен или зерен равновесен при Данном напряжении, не обосновано. Размер субзерен не является независимой переменной и не оказывает существенного влияния на скорость ползучести, если только он не зафиксирован каким-либо образом. Преобразования зерен в результате динамической рекристаллизации, по-видимому, недостаточно, чтобы вызвать изменение механизма ползучести от описываемого степенной зависимостью до диффузионной ползучести.  [c.190]

Данные Фолвейлера [18] по высокотемпературной ползучести поликристаллов АЬОз, представленные на рис. 3 и 4, показывают влияние напряжения и размера зерна на скорость ползучести это влияние согласуется с основными положениями механизма Набарро. Аналогичные результаты получены Варщоу и Нортоном в работе [20].  [c.260]

В момент, когда наступает ползучесть, дислокации начинают перемещаться к границам субзерен. Однако, так как разориентация соседних субзерен не оказывает влияния на скорость ползучести, эти границы служат просто стоком для дислокаций. Как показал Ли [53], поля напряжений, обусловливаемые субграницами, являются полями ближнего порядка и не оказывают какого-либо заметного влияния на обратные напряжения дальнего порядка, контролирующие движение дислокаций. В металлах с высокой энергией дефектов упаковки субзерна образуются в результате действия негомогенного напряженного состояния у границы зерна, что в свою очередь обусловливается различной ориентацией смежных зерен. Локальные изгибающие моменты и скручивание, которым подвергается каждое зерно, возрастают при более высоком приложенном напряжении, вследствие чего образуется субструктура с меньшим рамером зерен. Взяв за основу изложенное, предположили, что основной механизм, контролирующий скорость ползучести, определяется движением дислокаций внутри каждого субзерна. Поэтому здесь представляется возможным не учитывать размер субзерен, хотя в некоторых более ранних теориях высокотемпературной ползучести этому фактору и отводилась определенная роль.  [c.270]


Смотреть страницы где упоминается термин Влияние размера зерна на скорость ползучести : [c.236]   
Смотреть главы в:

Теория высокотемпературной прочности материалов  -> Влияние размера зерна на скорость ползучести



ПОИСК



Влияние Ползучесть

Влияние скорости

Зерно

Ползучесть влияние размера зерна

Размера Скорость

Скорость ползучести



© 2025 Mash-xxl.info Реклама на сайте