Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кобальт в суперсплавах

Твердофазное кислое флюсование связано с присутствием в составе сплава некоторых тугоплавких элементов, особенно молибдена, вольфрама и ванадия. Для предотвращения такой формы горячей коррозии необходимо поддерживать концентрацию этих элементов на достаточно низком уровне. Точное значение допустимой концентрации зависит от условий работы сплава. Практически нет никакой разницы в коррозионном разъедании сплавов на основе никеля, кобальта и железа, имеющих в своем составе тугоплавкие элементы. За исключением хрома все другие элементы не оказывают никакого заметного влияния на процесс твердофазного кислого флюсования. Однако так как для стимулирования этой формы горячей коррозии требуется достаточно сильное окисление тугоплавких металлов, то все элементы, способствующие селективному окислению алюминия или хрома в составе суперсплава, в известном смысле могут рассматриваться как примеси, подавляющие твердофазное кислое флюсование.  [c.83]


Электродуговая сварка — это процесс, в котором тепло поступает от электрической дуги между электродом - металлическим стержнем с нанесенным на него покрытием — и заготовкой. В результате разложения покрытия образуется защитная среда, а сам электрод служит источником присадочного металла. В сварочном производстве этот метод применен очень широко, но при сварке суперсплавов — в меньшей степени, поскольку трудно устранять флюс, сваривать тонкие сечения и невозможно автоматизировать процесс. В обычных случаях толщина свариваемого листа при таком методе сварки составляет 0,94 мм с применением установочного приспособления и 1,57 мм без закрепляющего или опорного приспособления. Имеется литература [9], где собраны типы существующих электродов на никелевой основе и дан перечень их поставщиков. За электродами из суперсплавов на основе кобальта или железа также можно обратиться к соответствующим поставщикам [Ю, 11].  [c.263]

Здесь приведены данные по химическому составу, длительной прочности, механическим свойствам при растяжении и физическим свойствам некоторых суперсплавов. Это либо наиболее распространенные, либо недавно созданные перспективные суперсплавы на основе никеля, кобальта и железа, ожидающие внедрения. Приведены номинальные значения параметров для прошедших обычную для данного материала обработку. Механические свойства материалов, полученных направленной кристаллизацией и имеющих преимущественно ориентированную структуру, характеризуют, если это не оговорено особо, свойства в продольном направлении. Как отмечалось в самой книге, механические свойства некоторых сплавов могут существенно изменяться после термической или термомеханической обработки. В этом случае приведенные данные не следует использовать для инженерных расчетов, они скорее будут полезны для изучения и сравнения сплавов.  [c.352]

Матрица суперсплавов всегда представляет собой плотно-упакованную аустенитную фазу с решеткой г.ц.к. Рис. 1.6 иллюстрирует область структуры г.ц.к. в трех удобных пространственных изображениях в виде простой тройной фазовой диаграммы, типичной четверной и полярной. Аустенит появляется из небольшой области г.ц.к. в системе Fe—Сг, введение никеля или кобальта приводит к расширению этой области. В большинстве случаев железо практически полностью исключают из состава сплавов. Таким образом, у истоков суперсплавов находится нержавеющая сталь. Основной вклад в уровень механической надежности сплава вносит твердорастворное упрочнение матрицы. Избранные варианты  [c.25]

Поведение суперсплавов в условиях усталости — тема далеко не узкая. Название "суперсплавы" охватывает материалы от сплавов с твердорастворным упрочнением ва основе викеля или кобальта до никелевых сплавов, содержащих до 65 % (по объему) ЗГ -фазы, и от монокристаллических отливок до мелкозернистых деформируемых изделий порошковой металлургии. Рассматривая усталостное поведение, необходимо учитывать его реакции на действующие механизмы ползучести и повреждающее действие среды, поскольку суперсплавы работают при высоких температурах и в агрессивных средах. Естественно, надо рассмотреть все стадии циклического деформирования, зарождения и распространения трещины, чтобы иметь данные для наиболее эффективного проектирования таких сложных механизмов, какими являются газотурбинные двигатели.  [c.336]


Влияние значительных количеств кобальта (20%) на про-тивоокислительную стойкость многих суперсплавов на никелевой основе вскрывает еще одно важное обстоятельство. Дело в том, что снижение содержания кобальта до 0—5 % благоприятно отражается на стойкости против циклического окисления сплавов при 1100 °С [106]. Это наблюдение находится в согласии с общеизвестным фактом худшей противоо-кислительной стойкости сплавов на основе кобальта в сравнении со сплавами на основе никеля. Объяснением этому служит быстрый рост рыхлых оксидов кобальта, а также типичное для подобных сплавов повышенное содержание тугоплавких металлов и пониженное содержание алюминия.  [c.48]

Истощение мировых запасов кобальта в Заире в 1978-1979 гг. привело к принятию программы NASA по изучению роли всех критически важных для производства газовых турбин материалов [14]. Исследования, проведенные в ходе выполнения этой программы, ясно показали, что многие литейные и деформируемые никелевые суперсплавы содержат гораздо больше кобальта, чем это необходимо для их изготовления и обеспечения наилучших механических свойств. Например, сплав Waspaloy с содержанием около 8% Со имеет такие же свойства, как и обычный сплав с 14% кобальта. Оптимальный состав сплавов с пониженным содержанием кобальта еще не отработан, так как кобальт не относится к числу самых редких критически важных элементов, запасы которых ограничены. Изучение литейных монокристаллических сплавов также показало, что для предотвращения образования /i-фазы в монокристаллическом сплаве, полученном путем модификации химического состава сплава MAR-M 247, достаточно около 5% Со [З]. Содержание кобальта на уровне 5% составляет лишь около половины от того количества, что обычно используется при производстве литейных сплавов для лопастей газовых турбин. Как показано в табл.20.1, в монокристаллических сплавах первого поколения содержание кобадьта не превышает 4-5%.  [c.335]

О 20 t itll 61 9 760 Т. С Рис.5.15. Механические свойства представительных сплавов на основе кобальта в сравнении с таковыми у современных им никелевых суперсплавов а — характеристики длительной прочности б — предел прочности при растяжении (Ув 1 Ni суперсплавы 2— направленная кристаллизация, сплавы СоТаС 3 — MAR—М509 4 — СоСг 5 — FSX414/X45 6 — область разброса данных для современных никелевых суперсплавов 205  [c.205]

В твердом растворе промышленных суперсплавов на основе кобальта, железа или никеля всегда присутствуют значительные добавки легирующих элементов, обеспечивающие сплавам прочность, сопротнвленне усталости или стойкость к поверхностной деградации. Сплавы на никелевой основе содержат также элементы, которые после соответствующей термической илн термомеханической обра-  [c.83]

В табл. 3.3 приведены различные модели высокотемпературного упрочнения, которые, по-видимому, могут быть непосредственно отнесены к суперсплавам с аустенитной структурой. Для твердых растворов критическими параметрами являются содержание растворенного элемента и различия в упругих модулях и атомных радиусах растворенного элемента и матрицы. Выделение при старении когерентных частиц с упорядоченной решеткой дает мощный прирост прочности аустенитной матрице на железной и никелевой основе. Однако для сплавов на основе кобальта реализовать такой механизм упрочнения не удается. К числу характеристических параметров преципитата следует отнести объемную долю, радиус и энергию антифазных границ. В некоторых случаях важное место отводят и размерному несоответствию решетки фазы решетке матрицы, особенно когда оно достигает или превышает 1 %. Этот параметр контролирует прочность сплавов IN-718 и IN-9Q1, упрочняемых вследствие размерного несоответствия решеток матрицы и фазы (NijNb). Отмечено [48], что применительно к невысоким температурам, когда  [c.121]

Циклическое упрочнение с последуюидим циклическим разупрочнением, свойственное при некоторых условиях (см. рис. 10.1) суперсплавам, содержащим упрочняющую э -фазу, не является уникальным для систем с упорядоченными выделениями. Подтверждением этому служит (рис. 10.3) поведение монокристаллов сплава Си-2 % (ат.) Со [З], где выделения представляют собой практически чистый кобальт. Старение по режимам, дающим различный размер выделений, приводит к целому спектру возможных "поведений" сплава. Когда выделения мелки, циклическое упрочнение слабо отличается от такового у пересыщенного твердого раствора. Упрочнение с последующим разупрочнением приобретает законченный вид "на пике тapeния" в этом случае дислокации сначала нагромождаются перед частицами фазы, а затем перерезают их. При еще более крупных частицах становится возможным образование вокруг них дислокационных петель. Когда частицы достигают своего максимального размера, амплитуда напряжения сначала возрастает, а затем достигает характеристического и очень устойчивого уровня. Аналогичное влияние размера выделений зарегистрировано и у суперсплавов [4, 5].  [c.339]



Смотреть страницы где упоминается термин Кобальт в суперсплавах : [c.335]    [c.8]    [c.95]    [c.118]    [c.45]    [c.323]    [c.84]   
Смотреть главы в:

Суперсплавы II Жаропрочные материалы для аэрокосмических и промышленных энергоустановок Кн2  -> Кобальт в суперсплавах



ПОИСК



Кобальт

Кобальтит



© 2025 Mash-xxl.info Реклама на сайте