Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другие аморфные металлические материалы

АМОРФНЫЕ МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ С ДРУГИМИ ФУНКЦИОНАЛЬНЫМИ МАГНИТНЫМИ СВОЙСТВАМИ  [c.174]

Сплавы с аморфной структурой привлекают к себе внимание, с одной стороны, как материалы с уникальным комплексом свойств, а с другой — как объект для изучения структуры и свойств неупорядоченных сред. Аморфное состояние — предельный случай термодинамической устойчивости кристаллической решетки металлов [426]. Общее для этих двух крайних состояний (кристаллическое и аморфное) — наличие ближнего порядка. Он является характеристикой топологического (расположение атомов в пространстве независимо от их сорта) и композиционного (распределение атомов различного сорта) упорядочения. Со времени открытия аморфных металлических материалов произошла значительная эволюция представлений о структуре аморфного состояния — от предположения об абсолютной неупорядоченности аморфной структуры до представления о локальной упорядоченности (ближний порядок, микрокристаллическое строение), не идентифицируемой существующими методами структурного анализа. Наконец, установлена масштабная инвариантность аморфных структур в широком диапазоне пространственных масштабов.  [c.269]


Перспективность использования аморфных металлических сплавов определяется их возможной большей технологичностью и возможностью получения материалов с новыми физическими свойствами. В настоящее время больше других изучены электрические, магнитные, антикоррозионные, механические свойства, и в этом параграфе будет дана краткая характеристика этих свойств.  [c.287]

Наиболее распространенным и имеющим наибольшее практическое значение методом получения аморфных материалов в большом количестве и в виде, пригодном для непосредственного использования в технике, например В виде ленты, является метод закалки расплава на поверхности быстро вращающегося цилиндра. Этот и другие методы, основанные на создании контакта струи расплава с массивным вращающимся теплоприемником, обеспечивают такую высокую скорость охлаждения (>10 К/с), что для многих металлических сплавов удается предотвратить процессы кристаллизации и получить конечную продукцию в виде аморфной ленты определенной геометрии (толщиной 15—50 мкм и шириной от 1 до 100 мм и более).  [c.9]

Широко известны преимущества многих металлических сплавов перед гомогенными чистыми металлами. Эти сплавы часто гетерофазны и благодаря этому обладают высокой твердостью и жаропрочностью. На наш взгляд, эти сплавы (в том числе широко распространенные чугуны, стали и другие, особенно, содержащие эвтектику) по своей структуре относятся к композиционным материалам, так же как и многие природные гетерогенные минералы, отличающиеся высокими показателями твердости или химической стойкости (например граниты, аморфные разновидности кремнезема — агат, опал или халцедон и др.). К неорганическим КМ можно отнести и многие стекла (си-таллы, полихромные и др.), цементы, бетоны, которые известны давно, но не рассматривались как КМ.  [c.6]

Как уже указывалось в разделе 5.4.3, аморфные металлические материалы с нулевой магнитострикцией характеризуются высокой магнитной проницаемостью и низкой коэрцитивной силой. Впервые близкая к нулю магнитострикция наблюдалась на аморфных сплавах в системах (Со —Fe)(Si — В) и (Со —Fe)(P —В) при содержании железа 5% (см. рис. 5.20). Затем нулевая магнитострикция была обнаружена и в сплавах, легированных никелем [104], что отмечено на рис. 5.42. Кроме того, магнитострикция приближается к нулю при замене железа на марганец [105, 106]. Недавно нулевая магнитострикция обнаружена в аморфных сплавах на кобальтовой основе с цирконием в качестве аморфизирую-щего элемента [107]. Эти сплавы ведут себя аналогично сплавам кобальта с металлоидами. Если в сплавы с цирконием вместо железа и (или) марганца ввести молибден или хром, то свойства сплавов резко меняются. При такой замене компонентов у сплавов кобальта с металлоидами магнитострикция отрицательна, а у сплавов с цирконием она оказывается положительной. Другие аморфные сплавы на основе кобальта, например Со — Та [108] и Со — Nb [109], также имеют отрицательную магнитострикцию, поэтому, добавляя туда железо, можно получить сплавы, имеющие нулевую магнитострикцию, что действительно наблюдается, например, в сплавах Со — Fe — Nb [ПО].  [c.161]


Аморфные металлические сплавы или металлические стекла (МС) являются новым перспективным материалом. По химическому составу они состоят из металлов и элементов аморфизаторов, в качестве которых используют бор, углерод, кремний, азот и другие в количестве до 30 %, Аморфное состояние сплава характеризуется отсутствием дальнего порядка в расположении атомов упаковки. Такое состояние материала достигается сверхбыстрым его охлаждением из газообразного, жидкого или ионизированного состояния. Существуют различные методы получения аморфных сплавов.  [c.581]

Полученные в ходе многих успешных экспериментов характеристики свойств аморфных металлов обусловили повышенный интерес к практическому применению этих материалов. Это видно по табл. 1.1, где сделана попытка проследить историю развития исследований аморфных металлов. В 1970 г. появилась основная технология получения непрерывных аморфных металлических лент методы центробежной закалки [2, 4] и закалки в валках (прокатки расплава) [5]. До этого удавалось получать лишь небольшие аморфные пластинки. Именно тогда, с появлением возможности изготовления лент, было установлено, что сплавы, хрупкие в кристаллическом состоянии, при аморфизации приобретают высокую пластичность и прочность [2, 6]. То, что до тех пор интересовало лишь экспериментаторов-одиночек, вдруг оказалось в центре всеобш,его внимания. После 1970 г. появились многочисленные разработки аморфных сплавов, были открыты многие другие их интересные свойства. Так, в 1974 г. были обнаружены свер хвысокая коррозионная стойкость [7] и высокая магнитная проницаемость [8, 9] аморфных сплавов. Сегодня эти новые материалы из мечты превратились в реальность.  [c.26]

Принципиален вопрос о существовании волн пластической де-формацлп в аморфных материалах, где, очевидно, отсутствует физически наиболее определенный структурный уровень кристаллитов-зерен. Пластическая деформация аморфных металлических сплавов реализуется путем коррелированного развития элементарных локальных сдвигов (аналогов дислокащюнных петель Сомили-аны) [14]. Прп их перколяции (слиянии) возникают микроскопически наблюдаемые полосы сдвига, ориентация которых не зависит от кристаллографии зерен как в поликристаллах, а определяется только положением плоскостей с максимальными касательными напряжениями. С другой стороны, аморфный сплав всегда не полностью изотропен. В нем существует мозаика областей уравнове-  [c.62]

Аморфные сплавы железо — металлоид, получаемые сверхбыстрым охлаждением и не содержащие других металлических элементов, кроме железа, обычно характеризуются довольно высокой скоростью коррозии по сравнению с чистым кристаллическим железом или сталью, что вызвано химической неустойчивостью их аморфного состояния. Однако замена в таких сплавах некоторой части железа хромом приводит к тому, что их коррозионная стойкость становится необычайно вьгсокой, превышающей коррозионную стойкость нержавеющих сталей, высоконикелевых сплавов и других подобных материалов. На рис. 9.1 приведены результаты коррозионных испытаний аморф Ных сплавов системы Fe — Сг — 13 Р — 7 С и кристаллических сплавов системы Fe—Сг при 30°С в 1 н. водном растворе Na l, в котором концентрация Na l в Два раза больше, чем в обычной морской воде. Скорость коррозии определялась по умень-  [c.248]

Химические свойства. Возможность использования в различных отраслях техники аморфных сплавов определяется еще и тем, что, помимо особых магнитных свойств, аморфные сплавы обладают уникальным комплексом химических и механических свойств. Высокие коррозионные свойства аморфных сплавов сделали их перспективными для использования в технике в качестве коррозионно-стойких материалов. Среди аморфных сплавов на основе железа наивысшую стойкость в агрессивных кислых средах имеют сплавы с определенным сочетанием металлов и неметаллов (высокое содержание хрома и фосфора). Однако высоким сопротивлением коррозии обладают только стабильные аморфные сплавы. Наглядным примером являются аморфные быстрозакаленные сплавы железо—металлоид, не содержащие других металлических элементов, кроме железа. В силу химической неустойчивости аморфного состояния они обладают низкой коррозионной стойкостью. Однако при введении хрома (вместо части железа) резко возрастает химическая стабильность аморфного состояния и, как следствие, растет коррозионная стойкость. Отметим, что в первом случае сопротивление коррозии аморфного сплава железо—металлоид ниже, чем у чистого кристаллического железа, а во втором оно превосходит коррозионную стойкость нержавеющих сталей и высокосодержащих никелевых сталей [427].  [c.303]


Электронная электропроводность наиболее отчетливо наблюдается у металлов (у которых она азываегся также металлической электропроводностью) кроме того, она обнаруживается у углерода (в модификациях графита и аморфного углерода), у некоторых соединений металлов с кислородом и серой и ряда других веществ. Она характерна, главным образом, для проводников, а также для многих [полупроводников (так называемые электронные полупроводники, имеющие весьма важные приме/нения в современной технике) относительно реже она встречается у диэлектриков. У практически применяемых электроизоляционных материалов, особенно аморфных, а также жидких, в подавляющем числе случаев встречается ионная, иногда молионяая электропроводность.  [c.22]

Оовершенно другого характера по н роисхо5КД нию и свойствам получаются пузырчатые вздутия после п жрытия некоторых сортов холоднокатаной стали. Холоднокатаная сталь в зависимости от способа обработки может иметь различное состояние поверхности. Очень часто приходится иметь дело с материалом, обладаюш,им неодинаковой структурой внутри и lia поверхности. Примером может быть сталь, прокатанная сначала в горячем состоянии до требуемого размера, затем протравленная в кислоте и прокатанная вхолодную без дальнейшей термической обработки (отжига). При последней холодной прокатке на поверхности такой стали всегда образуется твердая корка, так называемая металлическая кожа , покрытая пленкой окиси и имеющая искаженную мелкозернистую почти аморфную структуру Если изделие из такой стали после удаления окиси покрывается в нагретом электролите или если после покрытия оно нагревается при промывке или сушке, то поверхность его делается бугоистой, усеянной мелкими или крупными пузырями.  [c.8]


Смотреть страницы где упоминается термин Другие аморфные металлические материалы : [c.304]    [c.251]    [c.485]    [c.37]    [c.236]    [c.83]    [c.178]    [c.181]    [c.102]   
Смотреть главы в:

Аморфные металлы  -> Другие аморфные металлические материалы



ПОИСК



Аморфное юло

Аморфные металлические материалы с другими функциональными магнитными свойствами

Аморфный материал

Металлические материалы



© 2025 Mash-xxl.info Реклама на сайте