Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение плоской задачи с помощью тригонометрических рядов

РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ С ПОМОЩЬЮ ОДИНАРНЫХ ТРИГОНОМЕТРИЧЕСКИХ РЯДОВ (РЕШЕНИЕ ФАЙЛОНА)  [c.88]

Большим преимуществом метода решения плоской задачи с помощью тригонометрических рядов по сравнению с использованием для этой цели целых полиномов является то, что с помощью тригонометрических рядов можно отыскать решение для балки, нагруженной по верхней и нижней кромкам нагрузкой, распределенной по любому прои.з-вольному закону.  [c.85]


Отыскание бигармонической функции, удовлетворяющей условиям на контуре прямоугольной области, возможно различными методами. Ограничимся рассмотрением лишь некоторых из них решением плоской задачи в полиномах (целых функциях), в тригонометрических рядах, с помощью конечных разностей.  [c.62]

При решении плоской задачи с помощью функции напряжений применяются различные методы полуобратный метод с использованием алгебраических полиномов или тригонометрических рядов, метод функций комплексных переменных, метод конечных разностей ( 21.1) и другие методы.  [c.351]

Решение плоской задачи с помощью тригонометрических рядов  [c.368]

В работе [2] описана специальная конструкция тригонометрических рядов для построения периодических решений пространственной конвекции. В [3] детально разработан метод решения плоской задачи Релея с помощью этих рядов для случая валов. Показано, что с помощью специального подбора управляющих параметров алгоритма можно, в отличие от стандартного метода малого параметра, получать надежные количественные результаты для существенно больших надкритичностей конвективных движений. В предлагаемой статье приводится подробная аналитическая разработка подхода 2] для пространственной конвекции с гексагональной симметрией в горизонтальном слое со свободными границами. На основе полученных формул исследуется приближенно поведение линий тока, изотерм, зависимость числа Нуссельта от волнового числа. Численные расчеты проведены для малых надкритичностей при сохранении небольшого количества членов в рядах (7V = 2,4,6). Хотя область применимости построенных представлений по числу Релея еще не оценена, предложенная конструкция может быть использована при небольших N для расчета начальных приближений при построении, например, конечноразностных итерационных процедур решения уравнений Буссинеска для гексагональной конвекции.  [c.390]

Решение плоской задачи при помощи тригонометрических рядов  [c.126]

Решение плоской задачи в полиномах 125 ---при помощи тригонометрических рядов 126  [c.794]


Смотреть главы в:

Сопротивление материалов с основами теории упругости и пластичности  -> Решение плоской задачи с помощью тригонометрических рядов



ПОИСК



548 — Ряды

М тох решения плоской задачи

Плоская задача

Решение задач с помощью ЭВМ

Решение плоской задачи при помощи три

Решение плоской задачи с помощью одинарных тригонометрических рядов (решение Файлона)

Решение с помощью ЭВМ

Решения плоские

Ряд тригонометрический

Ряды тригонометрические



© 2025 Mash-xxl.info Реклама на сайте