Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обсуждение механизма реакции

ОБСУЖДЕНИЕ МЕХАНИЗМА РЕАКЦИИ  [c.104]

Как известно, вопрос о природе перенапряжения водорода является самым сложным и запутанным в электрохимии. Обсуждение критериев различных возможных механизмов реакций выделения водорода 2H+-f-2e- H2 дано в работах [199—210].  [c.58]

При обсуждении механизма действия ингибиторов кислотной коррозии металлов чаще всего используют результаты, полученные с помощью наиболее распространенной модельной реакции катодного выделения водорода. Это вполне оправдано, так как чаще всего именно-эта реакция определяет скорость коррозии металлов в кислотах. В то же время ингибитор действует и на анодный процесс, т. е. реакцию ионизации металла. Сопоставление величин г п у, полученных при изучении влияния ингибиторов на реакцию анодного растворения металлов, с величиной 0, как правило, экспериментально осуществить трудно. Это-объясняется тем, что при потенциалах анодного растворения металлов строение границы металл — раствор значительно усложняется. Измеряемые величины емкости имеют высокие значения и связаны, в основном, с протеканием фарадеевского анодного процесса, адсорбцией анионов раствора, в частности, ионов гидроксида.  [c.66]


Описывая цепную реакцию деления ядра, мы пренебрегли потерей нейтронов из реактора, предположив, что каждый образовавшийся нейтрон является инициатором дальнейшего деления и что этот процесс буд ет продолжаться (и ускоряться) до тех пор, пока не израсходуется все ядерное горючее, то есть пока не будут подвергнуты делению все ядра урана. Это было сделано ради удобства, чтобы полностью сосредоточить внимание на основном механизме размножения нейтронов. Однако на практике конструктор ядерных реакторов не может не считаться с потерями нейтронов и не стараться свести их к минимуму. Мы здесь не будем вдаваться во все технические подробности этой проблемы, а ограничимся лишь обсуждением того, как вообще нейтроны могут теряться (не вызывая деления).  [c.60]

Механизм развития горячей коррозии зависит, в первую очередь, от особенностей химического взаимодействия между расплавом осажденной соли и данным сплавом. В частности, именно присутствие соли является причиной появления на поверхности сплава продуктов такого взаимодействия, не обладающих защитными свойствами. Химические реакции могут быть вызваны изменением растворимости одних фаз в областях стабильности оксидов или образованием других фаз вне этих областей. При обсуждении возможных механизмов развития горячей коррозии удобно разделить их на две группы. В первую можно включить все механизмы, имеющие ту общую особенность, что образование продуктов химических реакций, не обладающих защитными свойствами, происходит в них вследствие некоторого "флюсования" сплава расплавом соли. Другая группа механизмов отличается тем, что в процессах образования продуктов химических реакций, не обладающих защитными свойствами, главную роль играют некоторые компоненты, входящие в состав осажденной соли (например, S или С1). Иногда влияние осажденного слоя на реакции в системе сплав-газ может быть и незначительным. В таких случаях осадок на поверхности сплавов часто формируется в виде пористой твердой фазы. Механизм развития  [c.68]

Может показаться странным обсуждение вопроса о химических реакциях, протекающих внутри однородного кристалла. Однако простой пример показывает необходимость учета вклада реакций в уравнение (1.5). Рассмотрим, к примеру, диффузию водорода через стальной образец, т. е. явление водородного охрупчивания. Водород, по всей вероятности, присутствует в растворе в атомарной форме, поскольку его атомы располагаются внутри кристалла в междоузлиях. Если ион водорода встречает иа своем пути иои кислорода и подходит к нему иа достаточно близкое расстояние, то за счет локального перераспределения коллективизированных электронов может образоваться пара тнпа Н О, которая будет мигрировать через кристалл со скоростью, отличной от скорости перемещения изолированного водородного иона. Таким образом, здесь приходится рассматривать два коэффициента диффузии, один из которых относится к образовавшейся паре, а другой — к изолированному водородному иону. Так как пара менее подвижна, чем изолированный иои, подобный механизм захвата помогает в некоторых случаях объяснить снижение скорости водородного охрупчивания стального слитка.  [c.12]


Если используются серно-, фосфорно- и щавелевокислые ванны, то общая толщина пленки может сильно превышать значение, рассчитанное на основании вольтажа Тонкий компактный барьерный слой, который никогда не превышает 14,5А/в и может быть и меньше, покрыт внешней пленкой, пронизанной порами до внешней стороны барьерного слоя, наполненными хорошо проводящим раствором. Падение потенциала в барьерном слое достаточно для того, чтобы принять во внимание его толщину. При обсуждении механизма образования барьерного слоя встречаются затруднения в объяснении того, почему в концентрированной серной кислоте, где ожидаемым анодным продуктом должен быть растворимый сульфат алюминия, возникает твердая окись алюминия. Тот факт, что однажды полученная окисная пленка остается в значительной степени нерастворимой, не является неожиданностью скорость растворения в кислоте окиси алюминия, особенно чистой, чрезвычайно низка (стр. 296), кроме того, раствор вблизи окисного слоя может быть менее кислым, чем в толще раствора ванны. Трудность, однако, исчезает при рассмотрении двух предполагаемых анодных реакций, упомянутых на стр. 134. Предположим, что кислотой является Н2ХО4, где X может быть Сг или 5 и что кислота при диссоциации дает ионы (ХО4) или возможно (НХО4) или (X гО,) . Большая часть тока между алюминием, подвергающимся анодированию, и катодом, передающим ток от внешнего источника, переносится через раствор по протонному механизму, но небольшое количество переносится ионами (Х04) , движущимися в обратном направлении (т. е. по направлению к аноду). Если ион (ХО4) достигает покрытого окислом алюминия, он притягивается к поверхности, вероятно, по крайней мере двумя атомами кислорода  [c.228]

Описанный подход сопряжен с необходимостью проведения большого объема трудоемких экспериментов при повышенных требованиях к точности измерений. Более распространен иной способ получения макрокинетической информации, основанный на сочетании измерений с математическим моделированием экспериментальной ситуации. При таком подходе центральным является вопрос о выборе рациональной кинетической модели разложения гетерогенных взрывчатых веществ. К сожалению, недостаток информации о свойствах веществ, размерах, форме и механизме образования очагов делают невозможным в настоящее время детальное описание из первых принципов возбуждения и распространения реакции. Отсутствие строгой, физически обоснованной модели возникновения и развития горячих точек частично компенсируется разнообразием полуэмпирических моделей, основанных на самых общих представлениях о характере процесса. Константы соотношений, описывающих зависимость разложения ВВ (то есть уравнений макрокинетики) от основных параметров состояния, полностью или частично подлежат экспериментальному определению. Для обсуждения определяющих факторов очагового разложения взрывчатых веществ грассмот-рим более подробно имеющиеся экспериментальные и теоретические данные об этом явлении.  [c.299]


Смотреть главы в:

Концентрационные автоколебания  -> Обсуждение механизма реакции



ПОИСК



Механизм реакции

Обсуждение



© 2025 Mash-xxl.info Реклама на сайте