Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выбор характеристик жаропрочности металла

ВЫБОР ХАРАКТЕРИСТИК ЖАРОПРОЧНОСТИ МЕТАЛЛА  [c.49]

Коррозия металлов в указанной смеси газов (кроме содержащих соединения серы) имеет такой же характер, что и в воздухе или в кислороде. При этом на поверхности металлов образуются плотные тонкие оксидные пленки, которые эффективно тормозят коррозионный процесс. Скорость коррозии в этом случае определяется скоростью диффузии катионов и ионов кислорода через оксидную пленку. Обычно она невысока, поэтому коррозия не является лимитирующим фактором при выборе материала. Это справедливо для перлитных сталей до 500 °С, хромистых нержавеющих — до 600 °С, аустенитных — до 700 °С, никелевых сплавов — до 800 °С. Как правило, определяющим при выборе материалов становятся характеристики жаропрочности.  [c.220]


В заключение рассмотрим комплекс характеристик тугоплавких металлов, определяющих их выбор в качестве основы наиболее жаропрочных сплавов новой техники. Для ОЦК тугоплавких металлов групп ванадия и хрома в отличие от стали и сплавов титана доминирующим фактором оказывается дисперсионное упрочнение.  [c.78]

Реальная оценка ресурса энергооборудования является одной из важных задач современного этапа эксплуатации тепловых электростанций. Расчет ресурса по принятым схемам [36] не в полной мере учитывает имеющийся разброс свойств металла, что может в значительной степени исказить точность оценки срока службы оборудования. Для деталей, работающих в условиях ползучести, достоверность оценки ресурса определяется в основном двумя факторами — точностью оценки жаропрочных свойств материала и точностью определения температурно-силовых условий работы оборудования в процессе эксплуатации. Повыщение точности оценки жаропрочных свойств может быть осуществлено, если при выборе расчетных характеристик учитывается связь между свойствами материала и его структурой.  [c.49]

Разработка и совершенствование методов испытаний на термическую (термомеханическую) малоцикловую усталость металлов и жаропрочных сплавов имеет существенное значение при получении базовых расчетных характеристик деформирования и разрушения материалов и является основой для оценки несущей способности элементов теплонапряженных и высоконагруженных конструкций обоснования выбора материала конструкций, работающих при термомеханическом и термоусталостном нагружениях прогнозирования долговечности конструкций оценки роли технологических факторов (литья, покрытия и т.п.).  [c.127]

В аспекте электронного строения и теории химических связей сделан анализ кристаллической структуры, физических и прочностных свойств переходных металлов, представляющих основу наиболее жаропрочных сплавов. Рассмотрено электронно-кристаллическое строение и термодинамические характеристики тугоплавких соединений, определяющие их выбор в качестве дисперсионно-упрочняющих фаз.  [c.2]

При выборе материала для работы в условиях высоких температур необходимо считаться с тем, что многие металлы с повышением температуры начинают интенсивно окисляться. Способность материала сопротивляться окислению при высокой температуре называется жаростойкостью, способность сохранять в этих условиях достаточно высокие механические характеристики — теплоустойчивостью или жаропрочностью.  [c.156]


Рабочие лопатки турбин. Выбор материала рабочих лопаток обычно проводят по характеристикам длительной прочности при рабочих температурах металла, которые должны обеспечивать необходимый запас прочности по отношению к максимальным растягивающим напряжениям. В охлаждаемых лопатках обычно не удается существенно снизить температуру кромок. Поэтому для этих лопаток помимо жаропрочности одним из важных требований к металлу является жаростойкость в продуктах сгорания соответствующего топлива при температурах, близких к температуре газа. Требование по жаростойкости предъявляется, разумеется, и к металлу не-охлаждаемых лопаток. Именно в связи с этим требованием значительные трудности возникают при выборе материала лопаток судовых ГТУ, работающих в контакте с отложениями, в состав которых входят агрессивные соли морской воды. Аналогичная ситуация возникает и с энергетическими ГТУ, экс-  [c.37]

Сопротивление газовой коррозии в практике называется жаростойкостью или окалиностойкостью. При выборе подходящего жаростойкого металлического материала, особенно для деталей, несущих силовую нагрузку, важна также характеристика его жаропрочности, т. е. способности данного металла в достаточной степени сохранять механическую прочность при повышении температуры. Эти две характеристики нельзя смешивать. Можно, например, указать, что алюминий и его сплавы при 400—500° вполне жаростойки, но совершенно недостаточно жаропрочны. Наоборот, вольфрамовая быстрорежущая сталь при 600—700° очень жаропрочна, но назвать ее жаростойкой никак нельзя. В некоторых условиях практики, помимо жаростойкости и жаропрочности, необходимо заботиться о достаточно высоких пределах ползучести при повышении температуры, т. е. достаточном сопротивлении материала длительным механическим нагрузкам при высоких температурах, или о высоком сопротивлении коррозионной усталости при повышенных температурах, если деталь работает в условиях вибрационных силовых нагрузок.  [c.99]

Волокна, полученные из рассмотренных способов, смешивают с порошком металла, образуюш,его матрицу. Выбор матричного металла определяется его совместимостью с материалом волокна, технологическими и эксплуатационными характеристиками композиционного материала. Обычно используют порошки алюминия, меди, титана и других тугоплавких металлов и их сплавов, а также жаропрочных сплавов на основе железа, никеля и кобальта. Смешивание порошка матричного металла с волокнами осуш,ествляют механическим (в случае дискретных волокон) или химическим (на волокна осаждают матричный металл из раствора его химического соединения) способом. Механическое смешивание лучше проводить в устройствах опрокиды-ваюш,егося типа (двухконусном смесителе, смесителе с эксцентричной осью и др.), так как барабанные смесители вызывают заметное комкование волокна.  [c.183]

Классификация и условное обозначение электродов по отечественным стандартам. В основе классификации покрытых электродов для сварки сталей лежат признаки, которые находят отражение в их условном обозначении в виде буквенноцифровой индексации. Условное обозначение электродов несет всестороннюю информацию о назначении и технологических свойствах электродов, о регламентируемых характеристиках металла шва и наплавленного металла (РХМ) по прочности, пластичности, хладостойкости, жаропрочности, жаростойкости и стойкости к межкристаллит-ной коррозии. Умелое использование этой информации помогает производить правильный выбор электродов для сварки различных сталей. Структура условного обозначения покрытых металлических электродов для ручной дуговой сварки сталей установлена ГОСТ 9466-75 и представляет собой дробь, в числителе и знаменателе  [c.98]

Полученные данные о твердости и пластичности могут быть использованы для характеристики влияния добавок исследованных металлов на механические свойства литого молибдена при обычной и высокой температурах, а также для выбора малоразупрочняющихся и технологических сплавов с целью исследования их жаропрочности.  [c.161]



Смотреть страницы где упоминается термин Выбор характеристик жаропрочности металла : [c.53]   
Смотреть главы в:

Работоспособность и долговечность металла энергетического оборудования  -> Выбор характеристик жаропрочности металла



ПОИСК



Выбор металла

Жаропрочность

Жаропрочность металла

Жаропрочные КЭП

Металлы характеристика



© 2025 Mash-xxl.info Реклама на сайте