Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные концепции метода конечных элементов (МКЭ)

ОСНОВНЫЕ КОНЦЕПЦИИ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ МКЭ  [c.128]

Основная концепция метода конечных элементов может быть наглядно проиллюстрирована на одномерном примере заданного распределения температуры в стержне, показанном на фиг, 1.1. Рассматривается непрерывная величина Т х), область определения отрезок ОЬ вдоль оси х. Фиксированы и пронумерованы лять точек на оси х (фиг. 1.2,а). Это узловые точки совсем не  [c.11]


Цри построении дискретной модели непрерывной величины, определенной в двух- или трехмерной области, основная концепция метода конечных элементов используется аналогично. В двумерном случае элементы описываются функциями от х, у, при этом чаще всего рассматриваются элементы в форме треугольника или четырехугольника. Функции элементов изображаются теперь плоскими (фнг. 1.5 или криволинейными (фиг. 1.6) поверхностями. Функция элемента будет представляться плоскостью, если для данного элемента взято минимальное число узловых точек, которое для треугольного элемента равняется трем, а для четырехугольного — четырем.  [c.14]

Распространение практических применений метода конечных элементов является следствием развития технологии в середине пятидесятых годов. Основной указанной выше предпосылкой развития метода является возможность автоматически эффективно построить и решить систему алгебраических уравнений высокого порядка. Распространение электронных вычислительных машин в середине пятидесятых годов позволило удовлетворить этим требованиям. В течение этого же периода выкристаллизовались теоретические концепции метода конечных элементов. Представляется интересным проследить далее историю развития этих концепций.  [c.17]

Метод конечных элементов содержит основные концепции метода сеток, связанные с дискретизацией областей непрерывного изменения аргумента и искомой функции, и метода Галер-  [c.196]

По определению все рабочее тело требуется удержать в системе двигателя Стирлинга. Если допускаются утечки, то преимущества работы по замкнутому циклу полностью не реализуются. Небольшие утечки неизбежны, но следует всеми возможными способами контролировать их. Чтобы сделать это, необходимо знать места утечек. Как мы уже отмечали, существуют два элемента конструкции, в которых возможны утечки — уплотнение штока поршня и трубка нагревателя, причем последняя опасна лишь в том случае, если используется водород. Проблема уплотнений является, по существу, эмпирической, и хотя имеются основные теоретические концепции по этому вопросу, они довольно сложны и включают много параметров, взаимосвязь между которыми не вполне ясна. Условия работы уплотнений в двигателе Стирлинга уникальны, и поэтому проблема разработки математической модели вызывает существенно большие трудности, чем аналогичная, уже довольно сложная проблема для обычных систем уплотнения. Сейчас нет сомнений в необходимости разработки такой модели, поскольку промыш-. ленное производство двигателей Стирлинга во многих случаях тормозится из-за отсутствия надежной технологии уплотнений. В настоящее время предпринимаются попытки улучшить положение дел [36, 37], и читатели, интересующиеся этим вопросом, могут обратиться к указанным источникам. Возможен и другой подход к решению задачи, предусматривающий расчет характеристик уплотнения в двигателе Стирлинга, считая его напряженным элементом конструкции и применяя для расчета напряжений метод конечных элементов [38]. Однако в настоящее время задача решается эмпирическими методами и теоретические основы, которые позволили бы получить аналитическое решение рассматриваемой проблемы, практически отсутствуют.  [c.262]


Несмотря на то что периоду с 1850 по 1875 г. непосредственно предшествовал период выдающихся достижений таких представителей французской школы теории упругости, как Навье и Сен-Ве-нан, все же по логике вещей именно этот период можно считать отправной точкой нашего обзора. В это время благодаря усилиям Максвелла [1.1], Кастильяно [1.2] и Мора [1.3] были выработаны основные концепции теории анализа стержневых конструкций. Эти концепции являются краеугольным камнем матричных методов строительной механики, которые окончательно оформились лишь спустя 80 лет и в свою очередь явились основой метода конечных элементов.  [c.17]

Основная концепция метода заключается в дискретизации рассчитываемой конструкции, которая расчленяется на некоторое число элементов конечных размеров, деформированное состояние которых является простым. Дискретизация конструкций пролетных строений должна при этом быть произведена таким образом, чтобы соблюдалось равенство энергий заданной системы и ее заменяющей модели.  [c.142]

Книга в основном посвящена изложению основных теоретических принципов и, за исключением гл. 1, бегло освещает прикладные аспекты конечно-элементного анализа. В доступный литературе имеется изобилие информации подобного рода, с частью ее можно ознакомиться по публикациям, списки которых приводятся в конце каждой главы. В гл. 1 помимо изложения некоторых примеров приложения метода дается краткий обзор истории его развития, приводится краткое описание набора встречающихся в последующих главах элементов, излагаются побудительные мотивы развития метода и концепция программ общего назначения.  [c.7]


Смотреть страницы где упоминается термин Основные концепции метода конечных элементов (МКЭ) : [c.120]   
Смотреть главы в:

Применение ЭВМ для решения задач теплообмена  -> Основные концепции метода конечных элементов (МКЭ)



ПОИСК



Конечный элемент

Концепция

Концепция конечных элементов

Метод конечных элементов

Основная концепция

Основная концепция метода конечных элементов

Основная концепция метода конечных элементов

Основные концепции ПМП



© 2025 Mash-xxl.info Реклама на сайте