Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия равновесия плоской системы сил (первая форма)

Условия равновесия (9) назовем условиями равновесия плоской системы сил в первой форме.  [c.51]

Первая форма уравнений равновесия вытекает непосредственно из равенств (1.33), определяющих необходимое и достаточное условие равновесия плоской системы сил.  [c.43]

Первое из этих равенств является геометрическим. Мы можем заменить это геометрическое равенство двумя аналитическими, как это было сделано при отыскании аналитической формы условий равновесия плоского пучка сил. Оставляя второе из равенств (32) без изменений, мы получим условия равновесия плоской системы сил в следующем виде  [c.79]


Необходимость этих условий равновесия плоской системы сил обусловлена тем, что если плоская система сил находится в равновесии, то силы этой системы удовлетворяют условиям равновесия в первой основной форме (9). А тогда из последнего условия (9) следует, что сумма алгебраических моментов сил относительно любой точки (следовательно, и точек А, В, С) равняется нулю.  [c.48]

При аналитическом способе решения задач о равновесии произвольной -плоской системы сил необходимо составить уравнения равновесия (см. стр. 95) по одной из трех форм в соответствии с данными задачи и решить их совместно. Число неизвестных, очевидно, не может быть в задаче больше трех, так как условия равновесия дают возможность написать только три уравнения первой степени.  [c.96]

Необходимость услоЕ ий (11) для равновесия плоской системы сил следует из первой формы условий равновесия (9). Первая часть теоремы о достаточности условий (11) для равновесия (линия действия равнодействующей силы й проходит через точки Л и В) доказывается так же, как и в теореме о трех моментах.  [c.49]

Переход от неравноосных форм кристаллов избыточной фазы к равноосным (сфероидизация) часто осуществляется путем деления кристаллов на части. Это деление хорошо изучено на примере сфероидизации цементита железоуглеродистых сплавов. На первый взгляд деление кажется энергетически неоправданным, так как сопряжено с развитие.м межфазной поверхности. Однако, если учесть эффект существующих в матрице и избыточной фазе структурных дефектов (границ и субграниц, скоплений дислокаций), диспергирование крупных кристаллов можно термодинамически обосновать. Например, в месте встречи границы зерен матрицы а с гранью избыточной фазы р (рис. 11) плоская меж-фазная поверхность оказывается неустойчивой. В условиях равновесия изменение термодинамического потенциала системы должно быть равно нулю. Предположим, что в результате роста кристалла р вдоль межзеренной границы матрицы межфазная поверхность увеличилась на At/. Развитие межфазной поверхности сопряжено с сокращением межзе-  [c.44]

При анализе условий образования устойчивых зародышей на основе равновесных диаграмм состояния необходимо дополнительно учитывать зависимость свободной поверхностной энергии на границе раздела фаз Я. и энергии упругой и пластической деформации Е от кривизны межфазной границы. При одинаковом объеме зародыша новой фазы энергия деформации будет наименьшей, если зародыши имеют форму плоского линзовидного диска, и наибольшей, если он представляет собой шар [6]. При одинаковой величине поверхности зародышей поверхностная энергия также наименьшая у плоского линзовидного диска и наибольшая у шара. При построении равновесных диаграмм состояния эти энергии полагают постоянными, что справедливо в первом приближении только в случае плоской границы. Однако даже при плоской границе раздела поверхностная энергия зависит от того, какими кристаллографическими плоскостями сопрягаются фазы. То же самое можно отметить и относительно энергии деформации, поскольку она зависит от анизотропии коэффициента линейного расширения и модулей упругости и сдвига в различных кристаллографических направлениях. Итак, если поверхность раздела фаз криволинейна, то равновесие сдвигается. Чем больше кривизна межфазной границы или меньше ее радиус, тем резче смещение лиш й растворимости на диаграмме состояния и тем больше приращение свободной энергии, приходящееся на единицу объема возникающей или растворяющейся фазы. Для того чтобы в этих условиях приращение свободно энергии системы в целом было наименьнгим, необходим переход некоторого количества одной фазы в другую, имеющую более низкий уровень уделыгоп свободной энергии.  [c.24]



Смотреть страницы где упоминается термин Условия равновесия плоской системы сил (первая форма) : [c.52]    [c.53]    [c.356]   
Смотреть главы в:

Курс теоретической механики 1974  -> Условия равновесия плоской системы сил (первая форма)



ПОИСК



Равновесие плоской системы сил

Равновесие системы тел

Равновесие условие равновесия

Система сил, плоская

Условие равновесия системы пар

Условия равновесия

Условия равновесия плоской системы

Форма равновесия системы

Формы равновесия



© 2025 Mash-xxl.info Реклама на сайте