Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алгоритм решения динамической задачи механики разрушения

В то же время при решении конкретных динамических задач механики разрушения, выдвигаемых практикой, возникает необходимость определения коэффициентов интенсивности напряжений в телах конечных размеров с трещинами. Как правило, для этого привлекаются различные численные методы и строятся численные алгоритмы решения указанных выше задач.  [c.318]

Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]


Автору неизвестны другие применения алгоритма FFT для решения задач вязкоупругости, кроме рассмотренного в [23], где решается квазистатическая задача. Из уравнения (5.36) видно, что единственная информация, которая необходима для описания конструкции или материала с вязко-упругими свойствами, это передаточная функция Согласно принципу соответствия [1], и независимо от того, является ли задача квазистатической или динамической, эта функция идентична упругой передаточной функции, за исключением того, что вместо упругих констант в нее входят комплексные модули, или податливости. Более того, как показано в [1], для материалов с малым тангенсом потерь можно получить Rh непосредственно из численного или аналитического упругих решений. Этот подход является весьма общим, если обратить внимание, что и / в уравнении (5.31) могут представлять любые напряжения, деформации или перемещения в любой конструкции, обладающей вязкоупругими свойствами, или другой линейной системе. В следующем разделе будет также показано, что рассмотренный подход легко использовать для анализа некоторых задач из области механики разрушения.  [c.200]

Рассмотрены процессы повреждения и разрушения материалов и элементов конструкций и формулировки критериев разрушения на основе подхода, включаюшего механику деформируемого твердого тела, механику разрушения и физику прочности и пластичности. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях. Основу книги составили результаты, полученные авторами.  [c.2]


Смотреть главы в:

Физико-механическое моделирование процессов разрушения  -> Алгоритм решения динамической задачи механики разрушения



ПОИСК



Алгоритм

Алгоритм решения

Динамическая механика разрушения

Динамические задачи механики разрушения

Задачи динамические

Задачи механики

Механика задачи

Механика разрушения

РЕШЕНИЕ ЗАДАЧ МЕХАНИКИ

Разрушение динамическое



© 2025 Mash-xxl.info Реклама на сайте