Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Минимум действия в форме Гамильтона Лагранжа

Вместо принципа наименьшего действия можно представить другой принцип, который также состоит в том, что первая вариация некоторого интеграла обращается в нуль, и из которого можно получить дифференциальные уравнения движения еще более просто, чем из принципа наименьшего действия. Этот принцип раньше оставался незамеченньш, вероятно, потому, что здесь вместе с исчезновением вариации вообще не получается минимум, как это имеет место для принципа наименьшего действия. Гамильтон был первым, исходившим из этого принципа. Мы воспользуемся этим принципом для того, чтобы представить уравнения движения в той форме, которую им дал Лагранж в аналитической механике. Пусть, прежде всего.  [c.307]


В связи со сказанным становится ясным, почему параллельно с развитием теории программного управления с самого начала построения теории оптимальных процессов ставилась задача о нахождении управляющих сил и сразу в виде функции от текущих координат хг (1) управляемого объекта. При этом получил наибольшее распространение тот подход к рассматриваемым задачам о синтезе, который развивад-ся по пути методов динамического программирования. Этот метод соответствует известным в вариационном исчислении рассуждениям о распространении возбуждений. С точки зрения вариационных принципов механики метод динамического программирования аналогичен введению функции действия и приводит соответственно к уравнениям типа уравнений Гамильтона — Якоби в частных производных. Таким образом, уравнения в частных производных, вытекающие из методов динамического программирования, связаны с обыкновенными дифференциальными уравнениями, фигурирующими, например, в принципе максимума, подобно тому как в аналитической механике уравнения Гамильтона — Якоби для функции 8 свйзаны с соответствующими уравнениями движения в форме Лагранжа или Гамильтона. Основу метода динамического программирования составляет функция V [т, х], которая имеет смысл минимума (максимума) оптимизируемой величины /[т, л (т)] (0 (т< < 1, т> о —текущий момент времени, 1 — момент окончания процесса), рассматриваемой как функция от начальных, временно фиксируемых условий г, х (т) = х, т. е.  [c.203]


Теоретическая механика (1970) -- [ c.366 , c.480 ]



ПОИСК



Гамильтон

Гамильтонова форма

Действие гамильтоново

Действие лагранжево

Действие по Гамильтону

Действие по Гамильтону Лагранжу

Действие по Гамильтону минимум

Действие по Лагранжу

Зэк гамильтоново

Минимум

Минимум действия в форме Гамильтона

Минимум лагранжева действия



© 2025 Mash-xxl.info Реклама на сайте