Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скачок амплитуды (вынужденных колебаний)

Если же рассматривать поведение амплитуды вынужденного движения, начиная с больших значений р, то мы будем двигаться по ветви резонансной кривой в области В в сторону уменьшения р и роста а до той точки, где касательная к резонансной кривой станет вертикальной. Дальнейшее уменьшение р может сопровождаться лишь скачком амплитуды вынужденного колебания а на ветвь кривой в области А и дальнейшим изменением а в соответствии с формой этой части резонансной кривой. Таким образом, мы не обнаружили естественного хода процесса, при котором система оказалась бы на ветви резонансной кривой в области С. Это согласуется с тем, что строгий анализ особенностей всех трех типов решений показывает неустойчивость движений, соответствующих области С, в отношении любых сколь угодно малых вариаций параметров.  [c.101]


Скачок амплитуды (вынужденных колебаний) 275  [c.391]

При значениях Р, больших определенного критического значения Ркр. в резонансных кривых появляются участки с вертикальной касательной, и для определенной области значений р возникает неоднозначная зависимость амплитуды вынужденных колебаний от частоты воздействия (тип 2). На рис. 3.25 заштрихована область, где резонансные кривые имеют обратный наклон, а ее границы соответствуют вертикальным касательным к резонансным кривым. Амплитуды резонансных кривых, лежащие в заштрихованной области, неустойчивы, и при непрерывном изменении частоты воздействия р для достаточно больших амплитуд внешней силы появляются скачки амплитуды при  [c.117]

Некоторый интерес может представлять и задача о продольном, изгибе стержня, имеющего нелинейные граничные условия. Приводимые ниже исследования показывают, что хорошо известные ранее типично нелинейные свойства одномассовых систем (зависимость собственной частоты системы от амплитуды колебаний,, многозначность амплитуд вынужденных колебаний, наличие скачков , затягиваний и пр.) расширяются и обобщаются соответствующим образом на системы с распределенными массами. В работе будет показано, что задача о колебании балки и задача о критических режимах валов, имеющих нелинейные граничные условия, являются принципиально различными, тогда как известно, что в линейной постановке они совпадают.  [c.5]

Электромагнитный вибровозбудитель состоит из корпуса, жестко соединенного с грузонесущей трубой, и реактивной массы сердечника с катушками 5. Между корпусом и сердечником установлены пружины. Подбирая жесткость пружин, можно обеспечить совпадение частоты собственных колебаний грузонесущего органа и вынужденных колебаний реактивной массы, т. е. работать в резонансном режиме. При этом амплитуда колебаний трубы и, следовательно, величина скачков материала увеличивается. Производительность конвейера возрастает.  [c.82]

Вынужденные колебания нелинейной системы, описываемой уравнением Дуффинга, исследовать столь просто не удается. И поныне это уравнение исследовано не полностью. Без особого труда удастся исследовать только случай малых затуханий б и а > 0. Резонансные кривые имеют при этом вид, показанный на рис. 1.11, и отличаются от резонансных кривых линейного осциллятора (рис. 1.10) наклоном ника и появлением неодноднознач-ности. Наклон происходит влево или вправо в зависимости от знака величины Ь в уравнении Дуффинга (1.18). Этим наклоном и неоднозначностью вызывается известное явление гистерезиса амплитуды вынужденных колебаний при медленном изменении частоты V внешней силы. Опо состоит в скачках амплитуды и том, что эти скачки происходят  [c.16]


Нелинейность деформационных свойств резин проявляется и в области резонансных частот гармонического нагружения, близких к собственной частоте колебаний системы. Нелинейность выражается в аномальной (со скачком) зависимости амплитуды перемещения вынужденных колебаний от частоты со (рис. 3.3.8), наблюдаемой вместо симметричных относительно максимума кривых для линейных систем (см. рис. 1.3.5). Обычно нелинейные соотношения сг — 8 выражены кривыми, вогнутыми к оси напряжений а. При увеличении частоты со амплитуда постепенно возрастает по АВ (см. рис. 3.3.8), достигая максимума <7 при соДалее наб.тю-дается скачок амплитуды, и при увеличении со экспериментальные данные попадают на кривую EF. При уменьшении частоты со ход кривой не совпадает с полученным при увеличении со, а именно кривая проходит по FED до точки D при Wj, а с дальнейшим умень-гаепие>[ со происходит скачок амплитуды из D в 5 и последующее  [c.162]


Смотреть страницы где упоминается термин Скачок амплитуды (вынужденных колебаний) : [c.82]    [c.193]    [c.207]    [c.30]    [c.160]    [c.95]    [c.317]   
Элементы теории колебаний (2001) -- [ c.275 ]



ПОИСК



Амплитуда

Амплитуда вынужденных колебани

Амплитуда колебаний

Амплитуда колебаний вынужденных

Колебания вынужденные

Скачки амплитуд

Скачок

Скачок амплитуды (вынужденных



© 2025 Mash-xxl.info Реклама на сайте