Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциальная энергия системы трех материальных точек

Если выйти за рамки модели одноатомного идеального газа и рассматривать многоатомные молекулы, то следует принять, что каждый атом обладает тремя степенями свободы (как материальная точка) следовательно, в общем случае число степеней свободы для молекулы, составленной из п атомов, равно 3 . Молекулу теперь следует считать системой материальных точек с центром масс, обладающим тремя степенями свободы поступательного движения. Кроме того, система может вращаться вокруг центра масс, а вектор угловой скорости, произвольно расположенный в пространстве, будет иметь три проекции на оси координат — три вращательных степени свободы. Атомы в молекуле подвижны по отнощению одни к другим и испытывают колебания относительно положения равновесия. На колебательные степени свободы приходится, таким образом, число, равное в общем случае для многоатомной молекулы 3 —6 для линейных молекул (атомы расположены вдоль прямой) это число равно Зп—5, поскольку вращательная степень свободы для линии, соединяющей атомы, отсутствует. Каждая колебательная степень свободы требует в среднем вдвое больше энергии, чем степень свободы поступательного или вращательного движения. Так происходит потому, что система из двух колеблющихся атомов обладает не только кинетической, но и потенциальной энергией колебания расчеты покаэывают, что на долю каждой приходится Т, следовательно, на  [c.35]


Поскольку движение по своей природе — явление на правленнов, кажется удивительным, что для определени движения достаточно двух скалярных величин. Теоремг о сохранении энергии, устанавливающая, что сумма кинетической и потенциальной энергий остается неизменной в процессе движения, дает лишь одно уравнение, в то время как для определения движения одной частицы требуется три уравнения в случае механической системы, состоящей из двух или более частиц, эта разница становится еще боль шей. И тем не менее эти два фундаментальных скаляра дей ствительно содержат в себе полную динамику наиболее сложных материальных систем, при том, однако, условии что эти скаляры кладутся в основу некоторого принципа а не просто уравнения.  [c.16]


Теоретическая механика (1981) -- [ c.162 ]



ПОИСК



Материальная

Потенциальная энергия материальной

Потенциальная энергия материальной точки

Потенциальная энергия системы

Потенциальная энергия системы точки

Потенциальная энергия системы трех

Система материальная

Система материальных точек

Система потенциальная

Система точек

Система трех тел

Точка материальная

Энергия потенциальная

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте