Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения луча в гамильтоновой форме

Первый член справа обращается в нуль, если концы фиксированы, а на остальной части кривой б р, брр, б( остаются произвольными. Отсюда вариационное уравнение (68.12) приводит к уравнениям движения в форме Гамильтона для лучей или траектории, именно, к уравнениям  [c.224]

Рис. 3. Типичная зависимость показателя преломления п у) от у для волновода Запишем уравнения движения луча в форме Гамильтона Рис. 3. Типичная зависимость <a href="/info/5501">показателя преломления</a> п у) от у для волновода Запишем <a href="/info/2653">уравнения движения</a> луча в форме Гамильтона

Открытие Гамильтона, согласно которому интегрирование дифференциальных уравнений динамики стоит в связи с интегрированием некоторого уравнения в частных производных первого порядка, основывалось на выводе результатов геометрической оптики, известных в корпускулярной теории, с точки зрения волновой теории, что имело большое значение в развитии физики своего времени. Теория Гамильтона интегрирования дифференциальных уравнений динамики есть прежде всего не что иное, как всеобщая аналитическая формулировка хорощо известного в физической форме соотнощения между световым лучом и световой волной. В силу изложенного здесь исходного положения делается понятной и та ненужно частная форма, в которой Гамильтон опубликовал свою теорию и из которой исходил Якоби. Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. В силу этого он рассматривал только такие световые волны, которые выходят из отдельных точек. Обобщение Якоби, вытекавшее отсюда, состояло в том, что для определения луча должны точно так же применяться и другие произвольные световые волны. Как известно, в оптике посредством так называемого принципа Гюйгенса из специальных волн строят общие  [c.513]

Мы видим, что Гамильтон рассматривает вводимую им функцию как результат индукции в оптической науке. Эта функция охватывает всю геометрическую оптику. Но важно и другое. Гамильтон уже здесь отмечает в общем виде родство принципа Ферма и принципа наименьшего действия. Конечно, отсюда еще довольно далеко до построения такой математической схемы, в которой оптика лучей совпала бы с механикой материальной точки. Здесь еще нет ничего принципиально нового, ибо родство принципа Ферма и принципа наименьшего действия отмечалось и ранее. Лишь в последующее время, когда в разработанной Гамильтоном математической теории совпадут формы уравнений лучевой оптики и механики, определится то, что мы называем оптико-механической аналогией. Но уже в 1827 г. Гамильтон прекрасно  [c.810]

Мы видим, что Гамильтон рассматривает вводимую им функцию как результат индукции в оптической науке. Эта функция охватывает всю геометрическую оптику. Но важно и другое. Гамильтон ун е здесь отмечает в общем виде родство принципа Ферма и принципа наименьшего действия. Конечно, отсюда еще довольно далеко до построения такой математической схемы, в которой оптика лучей совпала бы с механикой материальной точки. Здесь еще нет ничего принципиально нового, ибо родство принципа Ферма и принципа наименьшего действия отмечалось и ранее. Лишь в последующее время, когда в разработанной Гамильтоном математической теории совпадут формы уравнений лучевой оптики и механики, определится то, что мы называем оптико-механической аналогией. Но уже в 1827 г. Гамильтон прекрасно сознает математическую новизну своего метода, подчеркивая, что благодаря этому методу математическая оптика представляется... в совершенно новом виде, аналогичном тому, в каком Декарт представил применение алгебры к геометрии Рассмотрим теперь математический метод Гамильтона, с помощью которого он исследовал законы систем лучей.  [c.207]


До сих пор мы сталкивались с законами движения классической механики, представленными в форме обыкновенных дифференциальных уравнений, а также дифференциальных и интегральных принципов. В настоящем разделе мы изучим запись тех же законов классической механики в виде нелинейного дифференциального уравнения первого порядка в частных производных, а именно познакомимся с уравнением Гамильтона— Якоби. Впервые вывел это уравнение У. Р. Гамильтон (1827 г., дополнения в 1830 и 1832 гг.), побуждаемый прежде всего важным для астрономии изучением хода светового луча в оптических инструментах. Исследования К. Якоби, связанные с каноническими преобразованиями, развили эту теорию и обогатили ее.  [c.42]

Поскольку все же известное истолкование этой микроструктуры, конечно, при дополнительных весьма искусственных предположениях, может быть получено с помощью классической механики (причем имеются значительные практические достижения), то мне кажется особенно знаменательным, что подобное истолкование (я имею в виду квантовую теорию в форме, предложенной Зоммерфельдом, Шварцшильдом, Эпштейном и некоторыми другими) находится в теснейшей связи с уравнением Гамильтона и теорией Гамильтона—Якоби, т. е. с той формой классической механики, которая уже содержит отчетливое указание на истинный волновой характер движения. Уравнение Гамильтона соответствует как раз принципу Гюйгенса (в его старой наивной, а не в строгой, приданной ему 1 рхгофом форме). И подобно тому, как последний принцип, дополненный совершенно непонятными с точки зрения геометрической оптики правилами (правило зон Френеля) уже в значительной мере разъясняет явления дифракции, можно в некоторой мере уяснить, исходя из теории функции действия, происходящие в атоме процессы. Напротив, можно запутаться в неразрешимых противоречиях, если пытаться, как это кажется естественным, полностью удержать и для атомных процессов понятие траектории системы подобно этому бессмысленно, как известно, подробно изучать в области дифракционных явлений движение светового луча.  [c.690]


Смотреть страницы где упоминается термин Уравнения луча в гамильтоновой форме : [c.682]    [c.878]   
Акустика слоистых сред (1989) -- [ c.353 ]



ПОИСК



Гамильтон

Гамильтона уравнения

Гамильтонова форма

Зэк гамильтоново

Уравнение для лучей

Уравнения форме

Форма уравнением в форме

Х-лучи



© 2025 Mash-xxl.info Реклама на сайте