Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приближение в редкоземельных металлах

В тех случаях, когда сплавы с иттрием не изучались, но имеются сведения о подобных системах, содержащих другие редкоземельные металлы, в первом приближении можно предположить, что сплавы с иттрием имеют аналогичные свойства.  [c.257]

Приближение сильно связанных электронов. В благородных и переходных металлах, в металлах редкоземельных элементов и актинидов атомы содержат не полностью заполненные с1- и /-оболочки, электроны которых частично участвуют в проводимости. В этих случаях модель почти свободных электронов совершенно непригодна. Для исследования зонной структуры таких металлов разработаны различные приближения. Здесь мы рассмотрим простейший метод, основанный на приближении сильно связанных электронов.  [c.136]


Эта глава будет посвящена изучению взаимодействия между электронами в металлах. Мы воспользуемся простой моделью металла, в которой периодически распределенный заряд ионов заменен равномерно размазанным по всему кристаллу положительным компенсирующим зарядом. Такая модель газа взаимодействующих электронов лучше всего описывает простые металлы (например, щелочные), в которых электроны ведут себя почти как свободные, т. е. периодический потенциал может рассматриваться как малое возмущение, лишь слабо искажающее движение электронов. Возможно, что эта модель дает также неплохое приближение и для всех металлов, исключая переходные и редкоземельные в последних двух случаях периодическое поле играет суще-ственную роль.  [c.82]

Электронный спектр М. п. определяется 2 ра.чнород-ными подсистемами — подвижными носителями заряда (электронами проводимости и дырками) п более локализованными электронами атомов переходных (пли редкоземельных) металлов, содержащих недостроенные d- или /-оболочки. Ввиду этого электронный спектр М. п. ие может быть описан (даже в пулевом приближении) простейшей двухзонной моделью (см. Полупроводники) и включает в себя, как правило, третью, т. п. d- или /-зону (рис. 1).  [c.679]

Поскольку до настоящего времени исследователи располагали небольшим количеством металлического скандия, имеется всего несколько работ, посоященных изучению систем, образованных этим н другими металлами. Сходство скандия с иттрием и редкоземельными металлами дает возможность предсказать его поведение в сплавах в тех немногих случаях, когда имеются данные, позволяющие делать такое сравнение. Следовательно, при отсутствии экспериментальных данных соответствующие системы, образованные редкоземельными металлами, могут быть использованы в первом приближении для характеристики аналогичных систем с участием скандия. Такое предположение, вероятно, не всегда может быть правильным, так как известны случаи, когда наблюдаются заметные различия в поведении двух редкоземельных металлов при их взаимодействии с другим элементом. Кроме того, атомные радиусы редкоземельных элементов значптельнк больше (1,73—1,87 Л) атомного радиуса скандия (1,64 Л), так что он с большей вероятностью, чем редкоземельные элементы, мог бы образовывать твердые растворы с некоторыми металлами, имеющими несколько меньший атомный радиус, например гафнием (1,59 Л),, магнием <1,60 Л), плутоннем (1,64 Л), ураном (1,56 Л) и цирконием (1.60 Л).  [c.667]


Слабой связи приближение см. Модель почти свободных электронов Сноека эффект 311 Состояние вещества металлическое 56 сверхпроводящее 132 ферромагнитное 123 Состояние квантовомеханическое антисимметричное 57 виртуальное 122 локальное 56, 128 мультиплетность 58 плотность 224, 225 связанное 56, 122 симметричное 57 Спин-орбитальпое взаимодействие 88 Спины 87, 88, 238, 278—280, 302 редкоземельных металлов 238, 253,, 254 электронов 278  [c.327]

Поверхности Ферми поливалентных переходных металлов (как с незаполненными /-оболочками, так и с незаполненными /-оболочками) сложнее, чем те ПФ, которые мы до сих пор рассматривали. Это объясняется главным образом тем, что уровень Ферми находится как раз в середине /-зоны, так что модель свободных электронов нельзя использовать даже в качестве грубого приближения при интерпретации сложного спектра частот дГвА. Дополнительное усложнение заключается в том, что в некоторых из этих металлов достаточно сильное обменное взаимодействие приводит к ферромагнетизму, а в Р1 и Рс1 электрон-электронное взаимодействие обусловливает сильный парамагнетизм. Несмотря на эти трудности, за последние 15 лет произошел значительный прогресс в расшифровке сложных ПФ большинства переходных металлов (обзор см. в работе [284]). Это произошло как благодаря усовершенствованиям в технологии, которые дали возможность получать чистые и достаточно совершенные монокристаллические образцы, так и благодаря улучшению измерительной и вычислительной техники и развитию теории зонной структуры. Все это позволило успешно интерпретировать экспериментальные данные. В последующем рассмотрении мы остановимся только на некоторых важных моментах и приведем несколько примеров для иллюстрации сложности результатов. Мы не будем обсуждать редкоземельные металлы (с незаполненными /-оболочками) отметим только, что они обладают особенно сложными поверхностями Ферми, о которых пока еще далеко не все известно подобный обзор содержится в работе [480].  [c.272]


Смотреть страницы где упоминается термин Приближение в редкоземельных металлах : [c.114]   
Физика твердого тела Т.2 (0) -- [ c.309 ]

Физика твердого тела Т.1 (0) -- [ c.309 ]



ПОИСК



Металлы редкоземельные

Моновалентные металлы Двухвалентные металлы Трехвалентные металлы Четырехвалентные металлы Полуметаллы Переходные металлы Редкоземельные металлы Сплавы Задачи За пределами т-приближения



© 2025 Mash-xxl.info Реклама на сайте