Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметры орбит космических кораблей

Точность и надежность измерений требуется везде при определении параметров орбиты космического корабля и размеров детали, обрабатываемой на токарном станке, при измерении длин волн светового потока и расстояния от Москвы до Ленинграда, прн определении масс Марса или Венеры и микроскопических доз лекарств.  [c.67]

Введение понятия гиперболического прохождения подразумевает, что в течение короткого периода времени прохождения корабля в непосредственной близости от возмущающего тела действием сил солнечного притяжения можно пренебречь и относительную траекторию движения можно считать точно гиперболической. Пусть М — центральное тело, т — возмущающее тело, V — скорость космического корабля относительно М, и — скорость тела т ж Voo — скорость корабля относительно т. Схема гиперболического прохождения с целью увеличения скорости движения космического корабля изображена на рис. 6.37, где параметры движения до прохождения помечены индексом 1, а после прохождения — индексом 2. Тело т движется со скоростью U по орбите, пересекающейся под углом с орбитой космического корабля, который движется со скоростью V. Зная величины 7, F и р, нетрудно построить  [c.197]


Радиоэлектроника в указанных случаях была призвана выполнять с помощью быстродействующих электронных вычислительных машин сложные и трудоемкие расчеты различных вариантов траекторий полета космических кораблей, путем использования телемеханических систем обеспечивать с высокой точностью вывод ракет на заранее рассчитанные орбиты, посредством комплексов радиотехнических средств наблюдения производить точные измерения координат, скоростей и других параметров движения искусственных космических объектов, передавать по радио разнообразную телеметрическую информацию с борта космических кораблей на Землю и сигналов управления с Земли на корабль, осуществлять телеграфную, телефонную и телевизионную связь и многое другое.  [c.416]

В отличие от естественных космических тел космический корабль может изменить свою траекторию в космическом пространстве благодаря временному (импульсному) включению ракетного двигателя,. Это дает возможность перейти от первоначальной орбиты к другой, с совершенно иными параметрами. Такой переход носит название космического маневра.  [c.16]

Необходимость обеспечить точность реализации космических траекторий, на несколько порядков превышающую ее земные эквиваленты, породила необходимость создания дополнительных систем на борту космического корабля, позволяющих производить коррекцию орбиты в процессе полета. Сложность создания подобных систем заключается в том, что они могут быть построены только на базе элементов обычной точности. Коррекционные устройства должны включаться (по крайней мере в последний раз) в таких точках траектории, в которых влияние погрешностей системы коррекции на корректируемые параметры орбиты не превышает допустимый уровень. Ввиду того, что среди погрешностей коррекции содержатся энергетические погрешности, сформулированное требование означает, что для коррекции должны использоваться точки низкой эффективности коррекции, что может быть связано с дополнительными затратами, топлива. Поэтому для уменьшения веса вспомогательных систем космического аппарата во многих случаях необходимо проводить тщательное исследование различных свойств движения с целью поиска оптимальных решений при построении систем управления полетом космических аппаратов. Теория коррекции орбит космических аппаратов, получившая свое развитие в последнее десятилетие, является одним из разделов современной астродинамики и теории автоматического регулирования. Основные проблемы теории коррекции параметров движения космического аппарата сформулированы в работе Г. Н. Дубошина и Д. Е. Охоцимского (1963).  [c.304]


Во-первых, это двигатели разгонные и тормозные, служащие для вывода космического объекта с земной на планетарную орбиту и обратно, а также для посадки на Луну и планеты двигатели для коррекции и изменения параметров орбиты для совершения маневров на орбите при стыковке космических кораблей и т. п. Эти двигатели имеют тягу порядка 10 —10" Н. Во-вторых, это двигатели, предназначенные для обеспечения стабилизации и ориентации космического ЛА в пространстве компенсации малых изменений орбиты, происходящих вследствие малых изменений гравитационного поля и других малых возмущений коррекции импульса более мощных двигателей создания линейных ускорений с целью разделения газа наддува от жидкого компонента при запуске больших двигателей. Все эти двигатели отличаются малыми значениями тяги (10 —10" ) Н, имеют специфические особенности режимов работы по длительности действия, регулирования режима, многократности запуска, работы в условиях космоса, невесомости, длительности существования и т. п.  [c.346]

Однако положение Исаева было много сложнее, чем у других разработчиков ракетных двигателей. Конструкторы ЛИИ сделали все, чтобы спасти космонавта, если случится какая-либо неприятность при старте ракеты-носителя, но если откажет тормозная двигательная установка, космический корабль может застрять на орбите. Правда, параметры орбиты корабля Восток выбирались так, чтобы за счет естественного торможения он вошел в плотные слои атмосферы не позднее чем через 10 суток — для такой ситуации были предусмотрены дополнительные запасы кислорода, пищи и воды на борту корабля.  [c.35]

Увеличение высоты полета космических кораблей до 1000 км и более, связано с возрастанием радиационной опасности. Интенсивность излучения, захваченного геомагнитным полем Земли на этих высотах, достаточно большая, поэтому эксперименты по дозиметрии при полете спутников па таких высотах представляют особый интерес. Исследования по дозиметрии на этих высотах были осуществлены в СССР с помощью специального искусственного спутника Земли Космос-110 . Спутник был выведен на околоземную орбиту 22/П и приземлился 16/111 1966 г. Основная цель эксперимента — проведение медико-биологических исследований на подопытных животных (собаки Ветерок и Уголек). Параметры орбиты, на которую был выведен спутник, следующие начальный период обращения 95,3 мин, высота апогея 903 км, высота перигея 187 км, наклонение орбиты 51,9°.  [c.279]

Программа первого полета пилотируемого космического корабля предусматривала выведение его на эллиптическую орбиту, облет земного гаара в пределах одного витка, переход на траекторию снижения и приземление. Параметры орбиты (перигей, время обращения) были выбраны с учетом возможности сравнительно быстрого спуска на Землю в случае отказа тормозной двигательной установки за счет аэродинамических сил торможения, особенно ощутимых в области перигея. Запасы пищи и воды, нормальное действие корабельных систем жизнеобеспечения и емкость источников электроэнергии были рассчитаны на непрерывный полет корабля в течение десяти суток.  [c.441]

Запуск установки СНАП-Щ на орбиту вокруг Земли был осуществлен 3 апреля 1965 г. с базы ВВС США Ванденберг . Космический аппарат Аджена был выведен на орбиту, близкую к расчетной, со следующими параметрами высота в апогее 1320 км, высота в перигее 1290 км. Время существования корабля на орбите с такими характеристиками составляет более 3000 лет. Команда с Земли на включение реакторной установки была подана на втором витке, через 3 ч 40 мин после пуска ракеты и подтверждения параметров орбиты. Критический параметр установки в предпусковой период — температура теплоносителя, которая не должна быть ниже —  [c.237]

Первый запуск Шэньчжоу в автоматическом режиме состоялся 19 ноября 1999 года с космодрома Цзюцюань в провинции Ганьсу. Через десять минут после старта космический корабль отделился от последней ступени ракеты-но-сителя и вышел на орбиту с параметрами 195 километров в перигее и 315 километров в апогее. Запуск второго корабля был осуществлен 9 января 2001 года, третьего — 25 марта 2002 года. Все три полета были признаны успешными.  [c.561]


Смотреть страницы где упоминается термин Параметры орбит космических кораблей : [c.317]    [c.251]    [c.173]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.435 , c.437 , c.441 , c.443 , c.445 , c.447 , c.449 , c.452 ]



ПОИСК



Космические корабли

Орбита

Параметры орбит



© 2025 Mash-xxl.info Реклама на сайте