Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интеграл, общий интеграл интегральная кривая уравнения

Кроме общего интеграла уравнение Лагранжа может иметь также особые интегралы вида у = х -р ()>, ) + Ф(Х,), представляющие, следовательно, некоторые прямые в качестве интегральных кривых, причём Xj,..., X ..,— корни уравнения р —(р) = 0.  [c.224]

Можно определить интегральную поверхность S уравнения F = Q, потребовав, чтобы она проходила через произвольную пространственную кривую. Задача определения такой поверхности называется задачей Коши. Задача Коши может быть решена, если известен общий интеграл уравнения.  [c.243]


Если известен общий интеграл Ф (л , у, С) = О дифференциального уравнения, то огибающая этого семейства интегральных кривых дает особое решение (см. стр. 268).  [c.211]

Таким образом, если надо приближенно найти полный интеграл уравнения этого вида, то можно составить уравнения Гамильтона с функцией Я(р, q, О и применить численное интегрирование. В общей теории уравнений в частных производных интегральные кривые соответствующих уравнений Г амильтона называются характеристиками.  [c.341]

Уравнение семейства кривых, зависящих от одного параметра, Ф х, у, с) = 0 можно рассматривать как общий интеграл диференциального уравнения 1-го порядка F (х,у,у )=0(см. Диферен-гщальпые уравнения). Геометрически оба эти уравнения представляют одно и то же семейство интегральных кривых. Уравнение в конечной форме определяет каждую отдельную кривую семейства как непрерывную последовательность ее точек, диференциальное уравнение — как непрерывную последовательность направлений, так как оно содержит угловой коэф-т у касательной и выражает то или иное свойство ее, общее для всех кривых семейства. Т. к. огибающая имеет те же касательные, что и огибаемые кривые в общих с нею точках, то координаты ее удовлетворяют ур-июjP(х,у,у ) 0,и ур-ие ее является одним из его решений. Вместе с тем ур-ие огибающей не содержит параметра, не получается из общего интеграла ни при каких значениях с стало быть это не частный, а особый интеграл ур-ияF (ж, у,у ) = О.Т. о. особый интеграл представляет геометрически огибающую семейства интегральных кривых. Ур-ие огибающей или особый интеграл можно получить и непосредственно из диференциального ур-ия семейства, если рассматривать в нем у как параметр и исключить последний из системы ур-ий  [c.255]

Если уравнение (так называемый С-дискри-минант), полученное в результате указанной операции, является уравнением огибающей семейства интегральных кривых, то она представляет особый интеграл диференциального уравнения. В общем случае С-дискриминант определяет не только огибающую, но и геометрическое место кратных точек семейства интегральных кривых (например, узловых или точек возврата), когда вдоль кривой, изображающей С-дискриминант, одновременно соблюдаются условия дФ/дх = 0, дФ/ду = 0 (см. стр. 212).  [c.228]


Смотреть страницы где упоминается термин Интеграл, общий интеграл интегральная кривая уравнения : [c.41]    [c.155]   
Качественная теория динамических систем второго порядка (0) -- [ c.0 ]



ПОИСК



Интеграл общий

Интеграл уравнений

Кривая интегральная

Общие уравнения

Уравнение /?т-кривой

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте