Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкость (определение) капельных жидкостей

Существует несколько их систем. В нашей стране в основном используются вискозиметры системы Энглера (ОСТ 6275). Вискозиметр данной системы (рис. 2) применяется для определения вязкости капельных жидкостей, вязкость которых выше вязкости воды. Он состоит из металлического (латунного) цилиндра 1, имеющего сферическое дно с припаянной к нему латунной цилиндрической трубкой 3. Цилиндр помещается в водяную ванну 2. В отверстие латунной цилиндрической трубки 3 вставляется  [c.18]


Рис. 87. Схема прибора для определения кинематической (или динамической) вязкости капельной жидкости. Рис. 87. <a href="/info/293655">Схема прибора</a> для <a href="/info/100983">определения кинематической</a> (или динамической) вязкости капельной жидкости.
Наряду с газами и капельными жидкостями в качестве теплоносителей применяют жидкие (расплавленные) металлы, такие, как ртуть, натрий, калий, литий, висмут, галлий, свинец. Достоинством этих теплоносителей является то, что они имеют высокую теплопроводность, малую вязкость, высокую температуру кипения коррозионное воздействие на материал стенок каналов, по которым они перемещаются, — незначительное. Благодаря высокой теплопроводности жидкие металлы могут очень интенсивно отводить теплоту от поверхности нагрева. Их можно использовать при высоких температурах (700— 800° С) и в то же время при низких давлениях. Потери давления при движении жидких металлов в каналах находятся в приемлемых пределах. Многие из них имеют невысокую температуру плавления (для натрия, например, / д — 97,5° С) и могут без особых трудностей переводиться в жидкое состояние. Все эти качества делают их весьма перспективными теплоносителями. Применение жидких металлов в теплосиловых установках при определенных условиях позволяет повысить их коэффициент полезного действия.  [c.217]

Операция осреднения 441 и д., 446 Опережение при прокатке 220 Определение коэффициента вязкости капельных жидкостей 127  [c.516]

Характерным свойством масел является их высокая вязкость, которая вдобавок отличается сильной температурной зависимостью. Если в задаче поменять местами значения температур стенки и жидкости, то это приведет к заметному изменению а и Ар. Пусть г =20°С, а с=80°С. Опре-6 10 г ч 6 10 г ч 6 ю 2 3 деляющая температура сохранит свое значение, следовательно, изменится лишь поправка в формуле для определения а оценки показывают, что это приведет к увеличению а примерно на 30%. Падение давления вдоль трубы изменится более существенно оно уменьшится примерно в 3 раза. Сказанное здесь согласуется с результатами анализа, приведенного в 12-5 для случая обтекания плоской поверхности капельной жидкостью.  [c.282]


Проще принимать жидкость за однородную среду, характерной особенностью которой является то, что в со тоянии равновесия в ней не могут существовать тангенциальные усилия в с. учае же движения друг относительно друга смежных слоев тангенциальные усилия имеют место. Эта особенность является следствием внутреннего трения или так называемой вязкости жидкости. Вязкость воздуха мала, и в большинстве случаев ею можно пренебрегать однако иногда вязкость имеет чрезвычайно большое значение, и во всяком случае она оказывает определенное влияние на характер движения жидкости даже и тогда, когда движение происходит точно так же, как и в невязкой жидкости. Другой характерной особенностью жидкости является ее сжимаемость, которой можно пренебречь в случае капельной жидкости, но которая чрезвычайно важна для газа. Плотность воздуха, вообще говоря, следует рассматривать как функцию давления и температуры, но изменения давления в потоке жидкости около тела очень малы, и ими можно пренебречь, приняв плотность воздуха постоянной. Однако это допущение может быть принято лишь для скоростей потока ниже скорости звука. При скоростях порядка звуковой приходится принимать во внимание сжимаемость воздуха. Эти соображения повели к представлению о воздухе, как об идеальной жидкости, т. е. как о несжимаемой и невязкой среде. Теория движения жидкости—гидродинамика и аэродинамика—основывается главным образом именно на этом предположении, и получаемые отсюда выводы во многих случаях являются очень ценными. Однако теория идеальной жидкости приводит к парадоксальному заключению, что тело, движущееся в идеальной жидкости, не испытывает никакого сопротивления.  [c.10]

Критерий Пекле называют иногда критерием конвективного теплообмена. Чем больще критерий Ре, тем выще доля тепла, переносимого в жидкости за счет конвекции по сравнению с переносом за счет теплопроводности. Критерий Рейнольдса является важнейшей характеристикой состояния потока в частности, критерий Ре показывает, имеет ли место турбулентное или ламинарное течение жидкости при турбулентном течении распределение скоростей по сечению потока зависит от Ре. Критерий Грасгофа характеризует влияние на процесс конвективного теплообмена подъемной силы, возникающей за счет разности плотностей жидкости. Очевидно, при изотермическом течении 0г = 0. Критерий Прандтля характеризует физические свойства жидкости. Так как он целиком составлен из физических параметров, то он и сам является физическим параметром и, следовательно, может являться функцией тех же величин, от которых зависят составляющие его физические параметры. Критерий Рг определенных капельных жидкостей зависит только от температуры, причем для большинства жидкостей эта зависимость в основном аналогична зависимости вязкости (х от температуры, т. е. при увеличении температуры Рг резко уменьшается. Для воды, например,  [c.299]

Для определения вязкости капельных жидкостей широкое распространение получил вискозиметр Энглера (рис. Е.5), который представляет собой сосуд 1, окруженный водяной ванной 2 с водой определенной температуры. Ко дну резервуара припаяна латунная ц.миндрическая трубка 3, в которую вставлен платиновый насадок. Размены насадка, как и всего прибора, стандартные. Температуру изучаемой жр дкости измеряют термометром 4.  [c.19]

Случай третий. Содержание здесь такое же, как и в случае втором, но для физических параметров непригодны универсальные степенные формулы типа uluo — iT/T )". Как было сказано, это относится к капельным жидкостям, главным образом, из-за более сложной зависимости их вязкости от температуры. Что касается газов в околокритических состояниях, то их физические параметры приобретают такие температурные особенности, что задачу приходится анализировать особо. В рассматриваемом случае нет возможности пополнить перечень аргументов функции (4-41) с помощью строгих теоретических соображений. Как показывает опыт, приемлемое обобщение в определенных границах получается при введении отношений коэффициентов вязкости р. [37] или отношений чисел Рг [32], вычисленных по температурам стенки и жидкости. Эти отношения призваны заместить собой температурный фактор 0 в (4-42). Итак,  [c.101]


До сих пор е сложилось, однако, ясного представления о механизме стремления псевдоожиженных слоев к неоднородному, двухфазному псевдоожижению и образованию плотной фазы с порозностью, близкой к пороз-ности слоя при минимальном псевдоожижении. Некоторые ученые, исследовавшие неоднородное псевдоожижение, как, например, Тумей и Джонстон Л. 567], не пытаются объяснить даже такие основные опытные факты, как наличие двухфазного псевдоожижения для слоев, псевдоожиженных газами, и практически однофазное псевдоожижение того же материала капельными жидкостями. Иной характер носит работа Морзе [Л. 459] — одно из ранних, но обстоятельных исследований неоднородности псевдоожижения. Он анализирует различие между псевдоожижением капельной жидкостью и газом и приходит к правильному выводу, что тенденция к неоднородному псевдоожижению увеличивается с ростом (рм—P )/l- гдерм —плотность материала Рс и — плотность и динамический коэффициент вязкости среды. К сожалению, Морзе не дает сколько-нибудь убедительного физического объяснения того, почему должна наблюдаться подобная зависимость, выводя ее из довольно -формального применения уравнения Кармана — Козени (фильтрации сквозь плотный слой) к определению скорости отделения жидкости от частиц , остающейся неясным понятием.  [c.83]

При использовании рассматриваемого вискозиметра необходимо выяснить возможность просачивания жидкости между стенкой капельной трубки и столбиком ртути, так как в случае скольжения ртути не вся жидкость, заключенная между метками, будет проталкиваться через капилляр. С целью выявления просачивания жидкости в капельной трубке проводились специальные опыты, для чего трубку заполняли исследуемой жидкостью (вода, МИПД и т. д.) и подсоединяли к ней запорный вентиль. Регулируя вентилем расход жидкости, ртуть опускали до определенного положения в трубке и закрывали вентиль, оставляя ртуть в таком положении в течение 24 ч. Отсутствие смещения ртути за это время говорило о том, что просачивания жидкости нет. Время падения ртути фиксировалось секундомером по трем рискам, нанесенным на капельной трубке. Визуальное наблюдение за падением столбика ртути в установке возможно, так как применена стеклянная внешняя вертикальная защитная трубка. Низкая упругость паров МИПД предопределяет исследование зависимости вязкости только от температуры,  [c.168]


Смотреть страницы где упоминается термин Вязкость (определение) капельных жидкостей : [c.19]    [c.143]    [c.289]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.129 , c.130 ]



ПОИСК



Вязкость жидкости

Вязкость — Определение

Жидкость капельная

Определение коэффициента вязкости капельных жидкостей



© 2025 Mash-xxl.info Реклама на сайте