Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дерево — Свойства

Материалы, свойства которых по различным направлениям неодинаковы, называют анизотропными. Общеизвестным примером анизотропного материала является дерево — его свойства вдоль и поперек волокон резко различны.  [c.203]

Сталь, обработанная горячим способом, имеет волокнистое строение. Механические свойства такой стали вдоль волокон лучше, чем свойства стали поперек волокон (подобно тому, как это наблюдается у дерева). Различие свойств стали вдоль и поперек волокон является ее недостатком.  [c.121]


Гипотеза об изотропности предполагает, что свойства материала в различных направлениях одинаковы. Анизотропные материалы — это материалы, свойства которых зависят от направления. Пример такого материала — дерево его свойства вдоль волокон отличаются от свойств поперек волокон.  [c.258]

Наличие явления усушки древесины (см. Дерево, физические свойства дерева), весьма осложняет процесс С., т. к. вследствие различных величин усушки в тангенциальном и радиальном направлениях и в связи с неодновременным появлением усушки у наружной и внутренней зон могут появиться в древесине внутренние напряжения, при значительной своей величине вызывающие коробление и растрескивание. Наружная зона нри высыхании ниже точки насыщения волокон (25—  [c.255]

Одним из ценных свойств винипласта является его пластичность при нагревании и превращении его в твердое состояние при охлаждении, что позволяет, изменяя форму винипласта и его заготовок в нагретом (пластичном) состоянии, изготовлять из него различные конструкции, детали аппаратуры и трубопроводов гнутьем, выдавливанием, штампованием, так же как из металла. Винипласт легко поддается обработке на станках, а также инструментами, применяемыми при обработке металла н дерева. Винипласт. можно резать, строгать, сверлить, фрезеровать, полировать и т. п.  [c.413]

Иерархический подход. Иерархическая БД имеет граф логической схемы в виде дерева, а тип связей соответствует рис. 2.2, б. Пример логической схемы иерархической БД приведен на рис. 2.4. В иерархической БД связи направлены только от верхних сегментов к нижним, обратные указатели отсутствуют. Это объясняется принципиальным свойством иерархического представления данных каждая запись приобретает смысл лишь тогда, когда она рассматривается в своем контексте, т. е. любая запись не может существовать без предшествующей ей записи по иерархии. При поиске в иерархической БД необходимо указывать значение ключа на каждом уровне иерархии. Так, для доступа к записи из множества G (рис. 2.4) должны быть последовательно указаны ключи записей из множеств А, С и G.  [c.73]

Существуют материалы, способные воспринимать при растяжении большие нагрузки, чем при сжатии. Это обычно материалы, имеющие волокнистую структуру, — дерево и некоторые типы пластмасс. Этим свойством обладают и некоторые металлы, например магний.  [c.67]

Дерево, как известно, обладает ярко выраженной анизотропией упру их и прочностных свойств. Древесина имеет сравнительно низкую прочность на скалывание вдоль волокон. Поэтому разрушение деревянного образца при кручении начинается с образования продольных трещин (рис. 84).  [c.86]

Материалы, не обладающие указанным свойством, называются анизотропными. Анизотропно дерево, бумага, фанера, в некоторой степени стальной прокат.  [c.177]


В наш век с усложнением форм строительных конструкций, появлением авиастроения, разнообразными запросами машиностроения роль методов теории упругости резко изменилась. Теперь они составляют основу для построения практических методов расчета деформируемых тел и систем тел разнообразной формы. При этом в современных расчетах учитываются не только сложность формы тела и разнообразие воздействий (силовое, температурное и т. п.), но и специфика физических свойств материалов, из которых изготовлены тела. Дело в том, что в современных конструкциях наряду с традиционными материалами (сталь, дерево, бетон и т. д.) широкое применение получают новые материалы, в частности композиты, обладающие рядом специфических свойств. Так, армирование полимеров волокнами из высокопрочных материалов позволяет получить новый легкий конструкционный материал, имеющий высокие прочностные свойства, превосходящие даже прочность современных сталей. Но наличие полимерной основы наделяет такой композитный материал помимо упругих вязкими свойствами, что обязательно должно учитываться в расчетах. Даже в традиционных материалах в связи с высоким уровнем нагружения, повышенными температурами возникает необходимость в учете пластических свойств. Все эти вопросы теперь составляют предмет механики деформируемого твердого тела.  [c.7]

Объединение стержней в плоскую систему может осуществляться множеством способов. Рассмотрим простейшую систему, состоящую из трех стержней, соединенных шарнирами в треугольник АВС (рис. 3.3). Приложим к узлам взаимно уравновешенную группу сил Рд, и ( . В каждом из стержней возникнет нормальная сила, под действием которой все стержни изменят свою длину В случае использования жестких материалов (металлы, дерево, жесткие полимеры и композиты и т. п.) получим малые относительные деформации стержней, благодаря чему относительное изменение формы треугольника АВС будет несущественным. В такой ситуации говорят о геометрически неизменяемой системе. Подобным свойством обла,а ает, вообще говоря, всякая система, образованная стержневыми треугольниками, см., например, схемы по рис. 3.2 и 3.3.  [c.78]

Свойство тел деформироваться под нагрузкой, а затем восстанавливать свою форму и размеры называется упругостью. Исчезающая часть деформации называется упругой, а ту часть, которая остается, называют остаточной. Если механические свойства во всех направлениях одинаковы, материал называется изотропным. У анизотропных материалов свойства в различных направлениях разные. К числу таких материалов относится, например, дерево.  [c.4]

Дерево, как известно, обладает ярко выраженной анизотропией упругих и прочностных свойств. Древесина имеет сравнительно низкую прочность на скалывание вдоль волокон.  [c.115]

Эта предпосылка используется при решении большинства задач сопротивления материалов, хотя для некоторых материалов она весьма условна (например, для дерева, свойства которого в направлениях вдоль и поперек волокон различны). Материалы, свойства которых в различных направлениях различны, называются анизотропными. При решении некоторых задач необходимо учитывать различные свойства материала в различных направлениях, т. е. его анизотропию.  [c.19]

Сколько упругих постоянных необходимо ввести, чтобы полностью характеризовать упругие свойства дерева  [c.38]

Указанное свойство дерева является следствием его анизотропии. В дереве жесткие слои чередуются с мягкими. При продольном сжатии основную нагрузку воспринимают жесткие слои. При достаточно больших усилиях в этих слоях начинается местное выпучивание, которое приводит к быстрому разрушению образца. Таким же свойством обладает текстолит.  [c.357]

Отдельно взятый кристалл металла анизотропен. Но если в объеме содержится весьма большое количество хаотически расположенных кристалликов, то материал в целом можно рассматривать как изотропный. Поэтому обычно предполагается, что металлы в той мере, в какой с ними приходится иметь дело в сопротивлении материалов, изотропны. Встречаются, однако, тела и анизотропные. Анизотропно дерево оно обладает различными свойствами в зависимости от ориентации волокон. Анизотропна бумага полоски, вырезанные из листа бумаги в двух взаимно перпендикулярных направлениях, обладают различной прочностью. Существует анизотропия тел, связанная с их конструктивными особенностями. Так, например, анизотропна фанера, анизотропны ткани.  [c.13]

Дерево, как известно, обладает ярко выраженной анизотропией упругих и прочностных свойств. Древесина имеет сравнительно низкую прочность на скалывание вдоль волокон. Поэтому разрушение деревянного образца при  [c.99]


Материал, из которого изготовляют конструкции, считают однородным. Это значит, что любые сколь угодно малые его частицы имеют одинаковые свойства. Многие из применяемых в технике материалов в действительности обладают значительной однородностью строения. Это в первую очередь металлы, их сплавы и пластмассы. Другие материалы (дерево, бетон) обладают по сравнению с металлами меньшей однородностью.  [c.61]

Изотропными можно считать такие материалы, как большинство металлов, бетон, некоторые пластмассы. Многие строительные материалы, имеющие волокнистую структуру, например дерево, характеризуются различными свойствами в разных направлениях такие материалы называют анизотропными.  [c.61]

К недостаткам дерева относятся высокая гигроскопичность, нестандартность свойств, низкая нагревостойкость и горючесть. При  [c.228]

Если упругие свойства сплошной среды, образующей тело, одинаковы во всех его точках, то тело называют однородным. Если эти свойства не зависят от направления упругого смещения точки, то тело изотропно. Таковы аморфные тела — стекло и др. Если же свойства различны по разным направлениям, то тело анизотропно. Таковы кристаллы, дерево, волокнистые и армированные материалы. В дальнейшем мы ограничимся изучением изотропных тел.  [c.94]

Древесина характеризуется высокой гигроскопичностью, нестандартностью свойств, горючестью и малой дугостойкостью. В свеже-срубленном дереве твердых пород 35—55% влаги, сосна имеет 60—65% влаги. Нормальная техническая влажность древесины 8—12%.  [c.128]

Определение размеров проектируемой детали выпол--няется с учетом свойств материала, из которого предполагается изготовить деталь. Для рационального выбора i материала и наиболее полного его использования надо иметь данные, характеризующие важнейшие свойства различных строительных материалов (сталь, чугун, дерево, бетон, дюралюминий и пр.). Здесь, прежде всего, имеются в виду данные, которые характеризуют прочность материала, т. е. способность сопротивляться внешним нагрузкам, не разрушаясь.  [c.9]

Прежде всего, материал, из которого изготовляются конструкции, считается непрерывным, однородным во всех точках тела и обладающим во всех направлениях одинаковыми свойствами. Последнее свойство материала называется изотропностью. Действительно, некоторые конструкционные материалы, как, например, литой металл, обладают большой однородностью (чугун в данном случае является исключением). Другие материалы, как, например, дерево, обладают меньшей однородностью в сравнении с металлами. Так называемые композиционные материалы, все более распространяющиеся в технике,  [c.11]

Сопоставление результатов доводки на буковом притйре н доводки на ватмане говорит в пользу последней. Здесь при одной и той же пасте получена меньшая микротвердость (24,0 гПа) и меньший параметр шероховатости обработанной поверхности (/ а = 0,03 мкм). Бумага оказалась более податливой и однородной средой, чем дерево. Режущие свойства абразива при доводке на бумаге проявились более мягко, чем на притирах из дерева, бронзы, серого чугуна и других материалов.  [c.151]

Большинство твердых материалов способно выдерживать, не разрушаясь, очень высокое всестороннее давление, если только оно действует равномерно со всех сторон, как это, например, имеет место в твердом теле, окруженном жидкостью. Материалы с неплотной или пористой структурой, как, например, дерево, под действием высокого гидростатического давления подвергаются значительной остаточной деформации, и после снятия давления их объем остается уменьшенным. (Достаточно спрессованное таким образом дерево теряет свойство пловучести в воде.) С другой стороны, в кристаллических телах (металлах, твердых плотных горных породах) в тех же условиях наблюдается лишь упругая деформация весьма небольшой величины. В отношении сжимаемости плотные поликристаллические и аморфные тела ведут себя подобно жидкостям. Они упруго ся имаемы и способны противостоять высоким гидростатическим давлениям, достигающим почти любой технически возможной величины, не претерпевая остаточной деформации. Зато в твердых материалах меньшей плотности всестороннее давление вызывает явные признаки разрушения, как, например, в подвергнутых гидростатическому давлению цилиндрических образцах мрамора (Карман), а также в образцах дерева, которые при сжатии принимают неправильную форму вследствие своей клеточной анизотропной структуры (А. Фёппль). Если, подвергая такие материалы высоким всесторонним давлениям, не принять особых мер предосторожности, то передающая давление жидкость проникает в материал через его мельчайшие щели и трещинки. По наблюдениям Т. Паултера, стеклянные шары, подвергнутые в течение короткого периода времени очень высокому всестороннему давлению жидкости, разрушаются не прп максимальном давлении, а либо в течение периода уменьшения давления, либо же вскоре после быстрого снятия последнего. Ничтожные количества жидкости, способные проникнуть через невидимые мельчайшие поверхностные трещины в наружных слоях шаров, не успевают достаточно быстро вытечь из этих трещин при внезапном снижении давления. Поэтому при снятии внешнего давления в жидкости, попавшей в узкие трещины или каналы поверхностного слоя, возникает градиент давления, который и приводит к высокой местной концентрации растягивающих напряжений, создающих опасность разрыва стекла. В сравнительно более слабых материалах, как мрамор и песчаник, внешнее давление жидкости приводит к образованию трещин, в результате чего может произойти разрушение структуры этих пород.  [c.199]

Наиболее употребительные для изготовления фанеры сорта дерева береза, ольха, габоон, сосна, ясень, ель, орех и красный бук. Против действия влаги плиты защищаются покрытием их маслом, лаком илки парафином (парафин в бензин-бензоле). Преимущества перед досками из цельного дерева выравнивание свойств прочности во всех направлениях, поделки из таких склеенных фанер не изменяют формы от разбухания и сушки.  [c.1252]

Полимерные материалы, применяемые в виде самостоятельных коррозиоиностойких конструкционных материалов и в виде различных покрытий и композиций для защиты от коррозии стали, бетона, дерева и др., сочетают в себе комплекс весьма ценных физико-механических свойств.  [c.392]


ДОБАВЛЕНИЕ ИНГИБИТОРОВ. Ингибиторы можно использовать для предупреждения КРН и коррозии линии возврата конденсата. Как отмечалось выше, первый вид коррозии может быть сведен к минимуму добавлением фосфатов. Испытания с применением индикатора хрупкости [22] показали, что эффективными ингибиторами для этой цели являются таннины, в частности экстракт из коры квебрахо — дерева, растущего в Южной Америке его иногда добавляют в котловые воды для предупреждения образования накипи. Хорошие ингибирующие свойства проявляют также нитраты при введении в виде NaNOs в количествах, соответствующих 20—30 % щелочности воды по едкому натру [221. Этот вид обработки с успехом использован при подготовке питательной воды для котлов локомотивов. Его применение фактически предотвращало КРН.  [c.287]

Для производства деталей машин и приборов использунзт черные металлы (стали (1 чугуны), цветные металлы (медь, алюминий, сплавы на их основе и др.), неметаллические материалы (пластические массы, стекло, дерево и др.). Заводы-поставщики в соответствии с государственными стандартами гарантируют химический состав материалов и определенные механические свойства.  [c.158]

Дерево, как известно, обладает ярко выраженной анизотропией упругих и прочностных свойств. Древесина имеет сравнительно низкую прочность на скалывание вдоль волокон Поэтому разрушение деревянного стержня при кручении начинается с образования продольных трещин от действия касательных напря.жений, возникающих на продольных площадках. Стальной стержень разрушается по поперечному сечению от действия возникающих там касательных напряжений.  [c.55]

Свойство частей быть подобными всей структуре в целом называют самоподобием. Интервал еамопо-добия различных природных объектов может содержать масштабы от долей микрометра при рассмотрении структуры пористых горных пород [7] и сплавов металлов до десятков километров при рассмотрении рельефа местности [8] и формы облаков. В качестве примеров естественных (природных) фракталов можно привести деревья, облака, реку и разветвленную сеть ее притоков, систему кровообращения человека, "морозные" узоры на стекле и т.д.  [c.25]

Свойство частей быть подобными всей структуре в целом называют самоподобием. Интервал самоподобия различны.х природных объектов может содержать масштабы от долей микрометра при рассмотрении структуры пористых горных пород [36] и сплавов металлов до десятков киломефов при рассмотрении рельефа местности [37] и формы Облаков. В качестве примеров естественных (природных) фракталов моясно привести деревья, облака, реку и разветвленную сеть ее притоков, систему кровообращения человека, "морозные" узоры на стекле и т.д. Самоподобие предполагает, что копирование и масштабирование некоторого "эталонного" образа позволяет природе легко создавать сложную многомасштабную структуру.  [c.88]

Из всего возможного многообразия физических свойств тел для нас пока достаточно остановиться па простейшем — дефор--чируемости тела. Все физические тела под влиянием приложенных сил из.меияют свою фор.му, причем величина деформации зависит от различных условий материала тела, формы его, величины и направлений приложенных сил. Некоторые тела, например жидкости и газы, легко деформируются твердые тела (например, металлы, дерево и др.), наоборот, обычно получают незначительные. деформации.  [c.13]

Просвечивание у-лучами принципиально ничем не отличается от просвечива.чи.ч лучами рентгена, с той лишь разницей, что у-лучи проникают на большую глубину у-лучи обладают рядом характерных свойств они проникают через металлы, дерево, ткани, бумагу, пластмассы и другие непрозрачные тела вызывают люминесценцию некоторых веществ, активно действуют на эмульсии фотографических пластинок, вызывают электрические действия, заключающиеся в изменении электрического сопротивления вещества, через которое они проходят, оказывают очень вредное биологическое действие на организм человека. Просвечивание деталей у-  [c.380]

Натуральный каучук получается из латекса — сока некоторых тропических деревьев. Латекс представляет собой водную суспензию каучука с примесью некоторых солей, белковых и сахаристых веществ. Полученный из латекса путем осаждения — коагуляции и последующей обработки, освобождающей его от вредных примесей, каучук представляет собой материал, по свойствам сильно отличающийся от резины. Натуральный каучук есть полимер углеводорода — изопрена sHg и имеет такое строение  [c.210]

Ш 6 л л а к представляет собой прол<укт жизнедеятельности некоторых насекомых на ветвях тропических деревьев. Он хорошо растворим в спирте, почти нерастворим в бензине и бензоле, плавится при 80 °С, при длительном нагревании переходит в неплавное и нерастворимое состояние. По диэлектрическим свойствам шеллак относится к слабополярным диэлектрикам. Шеллак применяется в электротехнике главным образом в виде спиртового раствора для изготовления клеящих лаков, для слюдяной изоляции, а также для лакировки деталей.  [c.205]

Канифоль — хрупкая смола, получаемая из смолы (жив1 -цы) хвойных деревьев. Она растворяется в спирте, бензине, бензоле, нефтяных и растительных маслах и в других растворителях, в воде нерастворима. По диэлектрическим свойствам канифоль может быть отнесена к слабополярным диэлектрикам. Применяется для изготовления лаков и компаундов, используемых в электрической изоляции, добавляется к нефтяному маслу при пропитке бумажной изоляции силовых кабелей, в большом количестве применяется как составная часть многих электроизоляционных смол, в частности фенолоформальдегидных и полиэфирных.  [c.205]


Смотреть страницы где упоминается термин Дерево — Свойства : [c.39]    [c.74]    [c.9]    [c.42]    [c.15]    [c.14]    [c.229]    [c.118]   
Справочник металлиста Том 1 (1957) -- [ c.211 ]



ПОИСК



Дерево



© 2025 Mash-xxl.info Реклама на сайте