Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазер на центрах окраски

ТВЕРДОТЕЛЬНЫЕ ЛАЗЕРЫ НА ЦЕНТРАХ ОКРАСКИ  [c.957]

Твердотельные лазеры на центрах окраски в ионных кристаллах обладают широкой областью длин волн генерации 0,7—3,3 мкм, высокой стабильностью частоты и. малой шириной генерируемого спектра, возможностью работы в импульсно-периодическом и непрерывном режимах, высоким КПД.  [c.957]

Более подробную информацию о лазерах на центрах окраски можно найти в [2, 63, 64].  [c.957]


Таблица 34.10. Лазеры на центрах окраски Таблица 34.10. Лазеры на центрах окраски
Стабилизация частоты мощных ионных лазеров представляет интерес для развития техники перестраиваемых лазеров на красителях и лазеров на центрах окраски. В качестве оптич. репера используются узкие резонансы насыщенной флуоресценции в шириной  [c.452]

Перестройка длины волны генерации широком спектральном диапазоне осуществляется в лазерах на центрах окраски (с.м. Лазеры на 1 ентрах окраски), к-рые также обычно работают с накачкой др. лазером.  [c.50]

Мы изучим следующие типы лазеров 1) твердотельные лазеры (на кристаллах или стеклах), 2) газовые лазеры, 3) лазеры на красителях, 4) химические лазеры, 5) полупроводниковые лазеры, 6) лазеры на центрах окраски, 7) лазеры на свободных электронах и 8) рентгеновские лазеры,  [c.331]

Лазеры на центрах окраски 425  [c.425]

Лазеры на центрах окраски [37]  [c.425]

В настоящее время большое число различных типов центров окраски в кристаллах галогенидов щелочных металлов используется для создания эффективных оптически накачиваемых лазеров, перестраиваемых в широкой полосе в ближнем ИК-диа-пазоне. Лазеры на центрах окраски позволяют получать генерацию в диапазоне длин волн 0,8—3,3 мкм и, следовательно, представляют интерес с точки зрения расширения диапазона в область увеличения длин волн, qqq 0 е 0 в которой лазеры на растворах  [c.425]

Рис. 6.53 иллюстрирует одну из работающих схем лазера на центрах окраски. Лазер на центрах окраски возбуждается другим лазером (обычно Кг -лазером, генерирующим на крас-  [c.426]

Лазеры на центрах окраски 427  [c.427]

Лазеры на центрах окраски имеют следующие параметры. Типичная пороговая мощность накачки составляет порядка нескольких десятков милливатт (при фокусировке излучения накачки в кристалле в пятно диаметром 20 мкм). Получена непрерывная генерация мощностью 1 Вт при дифференциальном КПД до 7 % для / л-центров и до 60 % Для центров окраски. То, что дифференциальные КПД этих двух типов лазеров различаются почти на порядок, нуждается в пояснении. Такое различие  [c.427]


В первом эксперименте [34] 7-пикосекундные исходные импульсы от лазера на центрах окраски с синхронизацией мод, работающего вблизи 1,5 мкм, распространялись через 320-метровый световод (л/Го 0,25). Когда пиковая мощность начальных импульсов превышала 1,2 Вт (уровень мощности, соответствующий фундаментальному солитону), выходные импульсы становились короче начальных на величину, которая возрастала при увеличении N. Наблюдаемые значения коэффициента сжатия показаны на рис. 6.8 (крестики) для трех значений N. Коэффициент сжатия бьи близок к теоретическому  [c.167]

В первой экспериментальной демонстрации волоконного солитонного ВКР-лазера [132] накачкой служили 10-пикосекундные импульсы от лазера на центрах окраски на длине волны 1,48 мкм. Кольцевой резонатор включал 500 м сохраняющего поляризацию одномодового световода со смещенной дисперсией, длина волны нулевой дисперсии  [c.252]

Возможность компенсации оптических потерь за счет комбинационного усиления убедительно показана в недавних экспериментах [24]. Спектрально-ограниченные импульсы лазера на центрах окраски  [c.209]

Рис. 5.12. Блок-схема соли-тонного лазера. Изображен синхронно - накачиваемый лазер на центрах окраски (ЦО) с резонатором, образованным зеркалами 3i—5q, и вспомогательный резонатор За—Зз, содержащий одномодовый волоконный световод (ВС), Jli я JI2 — линзы [37] Рис. 5.12. <a href="/info/65409">Блок-схема</a> соли-тонного лазера. Изображен синхронно - накачиваемый лазер на <a href="/info/16586">центрах окраски</a> (ЦО) с резонатором, образованным зеркалами 3i—5q, и вспомогательный резонатор За—Зз, содержащий одномодовый <a href="/info/32439">волоконный световод</a> (ВС), Jli я JI2 — линзы [37]
Простейшая схема такого лазера представлена на рис. 5.14 [42]. Импульсно-периодическое излучение накачки от лазера на центрах окраски (Х =1,47 мкм, Ti/2=10 пс) вводится в синхронный резонатор, содержащий одномодовый волоконный световод (L = 500 м). Точка нулевой дисперсии световода за счет специального выбора профиля показателя преломления сдвинута в область Хкр= 1.536 мкм. Таким образом центр линии комбинационного усиления 1,588 мкм попадает в область аномальной дисперсии групповой скорости.  [c.216]

В ближней инфракрасной области (0,8—3,8 мкм) можно использовать вместо лазера на красителе так называемый лазер на центрах окраски. Широкие полосы люминесценции определенных центров окраски (например, Р+-центры) в щелочногалоидных кристаллах также позволяют осуществить спектральную перестройку и генерацию очень коротких импульсов. Механизмы накачки и конструкция этих лазеров такие же, как у лазеров на красителях. В качестве источников света для накачки особенно подходящими являются лазеры с ионами криптона и АИГ Nd-лазеры (см., например, [2.14] и цитированную там литературу).  [c.82]

Как и в лазерах на красителях, синхронная накачка может применяться в лазерах на центрах окраски . Различные центры окраски в щелочных и щелочноземельных кристаллах обладают широкой линией люминесценции, лежащей в диапазоне длин волн 0,8—3,8 мкм. Такие кристаллы позволяют в этом спектральном интервале генерировать весьма короткие импульсы с высокой частотой следования. В качестве источников накачки здесь применяют лазеры на ионах инертных газов, лазеры на красителях или непрерывно накачиваемые лазеры на АИГ Nd (см., например, [2.14, 4.13]). Механизм образования импульсов в лазерах на центрах окраски и в лазерах на красителях одинаков. Поэтому все выводы, сделанные в последующих разделах для лазеров на красителях, справедливы и для лазеров на центрах окраски.  [c.152]

В лазерах на центрах окраски активной средой являются ионные кристаллы. Накачка осуществляется оптическим способом -лазерным излучением. Такие лазеры применяются в научных исследованиях.  [c.513]

Целям молекулярной спектроскопии наиболее удовлетворяют широкополосные лазеры на стеклах и красителях (с полосой генерации более 50—100 см ), а также лазеры на центрах окраски.  [c.125]

ЛАЗЕРЫ НА ЦЕНТРАХ ОКРАСКИ (ЛЦО) - лазеры, в к-рых активной средой служат ионные кристаллы с центрами окраски. Под воздействием ионизирующих излучений 7-лучей, электронов высокой энергии, рентг. лучей, нейтронов) либо при нагреве в парах щелочных или щелочноземельных металлов в оптически прозрачных, бесцветных кристаллах возникают вакансии, локализующие на себе за счёт кулоповского притяжения  [c.566]


Перестройка длины волны в лазерах с Р. д. осуществляется преим. поворотом дисперсионного элемента либо зеркала резонатора. Тонкая настройка длины волны в узком диапазоне достигается изменением дав ления газа внутри резонатора. Дисперсионные элемеа-ты вносят относительно большие потери на длине волны генерации (от неск, процентов до неск. десятков процентов), поэтому Р. д. применяются преи.м. в лазерах с большим коэф. усиления активной среды, наир, в лазерах на красителях и лазерах на центрах окраски.  [c.318]

Рис. 6,53. Типичная конструкция непрерывного лазера на центрах окраски. Параметры установки, приведенные на рисунке, относятся к КС1 Li-лазеру с продольной накачкой Кг+-лазером. (Согласно Молленеру [37].) Рис. 6,53. Типичная конструкция <a href="/info/192170">непрерывного лазера</a> на <a href="/info/16586">центрах окраски</a>. <a href="/info/307775">Параметры установки</a>, приведенные на рисунке, относятся к КС1 Li-лазеру с продольной накачкой Кг+-лазером. (Согласно Молленеру [37].)
Однако недавно было показано, что некоторые новые классы лазеров на центрах окраски (например, кристаллы галогенидов щелочных металлов, активированные ионами Т1+) являются стабильными как по отношению к оптическому излучению, так и к температуре. (Небольшие концентрации р2 -центров в кристалле LiF удается застабилизировать путем введения специальных примесей в кристалл. Стабильными получаются также ( 2)д Центры, например, в кристалле NaF. —это ентр, распо-  [c.427]

Благодаря широкому диапазону перестройки, очень узкой линии лазерного излучения и возможности генерировать импульсы пикосекундной длительности лазеры на центрах окраски представляются чрезвычайно заманчивыми для применений в таких областях, как молекулярная спектроскопия и устройства, предназначенные для контроля волоконных световодов. Лазеры на центрах окраски с синхронизацией мод, излучающие на частоте Я = 1,5 мкм [КС1 Т1°( 1)], применялись для генерации очень коротких импульсов в одномодовых волокнах (длительностью около 200 фс). Здесь использовались такие свойства волокон, как фазовая самомодуляция и сжатие импульса (соли-тонный лазер) [см. также разд. 8.5].  [c.428]

В первой экспериментальной реализации солитонного лазера Молленауэр и Столен [57] связали резонатор синхронно накачиваемого лазера на центрах окраски с синхронизацией мод с другим резонатором, содержащим отрезок одномодового световода, под держивающего поляризацию. На рис. 5.8 изображена схема экспериментальной установки. При отсутствии волоконного резонатора сам лазер на центрах окраски генерирует импульсы длительностью > 8 пс (длительность на полувысоте по интенсивности), перестраиваемые в диапазоне 1,4-1,6мкм. Тем не менее, когда для обеспечения синхронной обратной связи используется волоконный световод, длительность лазерных импульсов сокращается в зависимости от длины световода до 0,2-2 пс. Автокорреляционные измерения показывают, что импульсы имеют форму, близкую к гиперболическому секансу это подтверждает, что в световоде импульсы являются солитонами.  [c.123]

Возможность данной схемы была продемонстрирована в эксперименте [69], где солитонные импульсы длительностью 10 пс распространялись по 10-километровому световоду с ВКР-усилением и без него. На рис. 5.11 изображена схема экспериментальной установки. Там также показаны АКФ лазерного импульса (без световода) в сравнении с АКФ. полученной на выходе световода. При отсутствии ВКР-усиления солитонный импульс уширяется примерно на 50% из-за наличия потерь. Это находится в согласии с формулой (5.4.6), которая предсказывает Ti/Tq =1,51 для параметров световода, использованного в эксперименте, а именно 2 — 10 км и а = 0,0414 км (0,18 дБ/км). ВКР-усиление осуществлялось за счет инжектирования непрерывного излучения накачки на 1,46 мкм от лазера на центрах окраски в направлении, противоположном распространению солитонов. Мощность излучения накачки составляла 125 мВт. Как видно из рис. 5.11, импульс на выходе практически идентичен по форме и по энергии входному импульсу, что указыв.- т на практически полное восстановление солитона. Малоинтенсив ле крылья в восстановленном солитоне приписаны рассеянной доле энергии, возникающей из-за отличия формы входного импулы.а от гиперболического секанса. Возможности схемы с ВКР-усиленис i были продемонстрированы Молленауэром и Смитом в эксперименте [75], где 55-пико-секундные импульсы могли 96 раз обращаться по 42-километровой волоконной петле без значительного изменения своей длительности. Это соответствовало эффективной длине распространения более чем 4000 км. Конструктивная сторона таких солитонных линий связи, использующих ВКР-усиление, будет рассмотрена далее в этом разделе.  [c.128]

Уширение спектра, вызванное ФКМ, наблюдалось экспфимен-тально в конфигурации накачка-сигнал . В эксперименте [52] 10-пикосекундные импульсы накачки были полуены от лазера на центрах окраски, работающего на длине волны 1,51 мкм, в то время как сигнальные импульсы на длине волны 1,61 мкм генерировались в волоконном ВКР-лазере (см. разд. 8.2.2). Длина дисперсионного разбегания составляла 80 м, в то время как дисперсионная длина превышала 10 км. Наблюдались как симметричные, так и асимметричные спектры сигнального излучения, по мере того как длина световода возрастала с 50 до 400 м. Эффективная задержка между импульсами изменялась за счет расстройки резонатора волоконного ВКР-лазера.  [c.203]

Привлекательным свойством волоконных ВКР-усилителей является широкая полоса усиления (> 5 ТГц). Они могут использоваться для усиления одновременно нескольких каналов в многоканальной системе оптической связи. Это было продемонстрировано в эксперименте [74], где сигналы от трех полупроводниковых лазеров с распределенной обратной связью в диапазоне 1,57-1,58 мкм одновременно усиливались в поле накачки с длиной волны 1,47 мкм. В этом эксперименте излучение накачки было получено от многомодового полупроводникового лазера, что делает данную схему практически применимой для систем оптической связи. При мощности накачки всего 60 мВт было получено усиление 5 дБ. Теоретический анализ двухканального комбинационного усиления показывает, что в общем случае существует взаимодействие между каналами [75]. Широкая полоса усиления волоконных ВКР-усилителей делает их пригодными для усиления коротких оптических импульсов. Усовершенствованию систем оптической связи с помощью комбинационного усиления уделено значительное внимание [76-81]. Наиболее многообещающим кажется использование комбинационного усиления для передачи сверхкоротких солитоноподобных импульсов по световодам длиной несколько тысяч километров [78, 80] (см. разд. 5.4). В эксперименте [79] импульсы длительностью 10 пс на длине волны 1,56 мкм усиливались при накачке непрерывным лазером на центрах окраски с длиной волны 1,46 мкм. Усиление таких коротких импульсов возможно только благодаря широкой полосе ВКР. Недавно в такой схеме было продемонстрировано прохождение солитонов длительностью 55 пс по световоду эффективной длиной 4000 км [81].  [c.232]


Другое применение узкой линии ВРМБ-усиления связано с его использованием в качестве перестраиваемого узкополосного оптического фильтра для селекции каналов в многоканальных системах связи [45]. Если разность частот соседних каналов больше, а скорость передачи меньше, чем ширина полосы усиления Avg, то, перестраивая лазер накачки, можно избирательно усиливать данный канал. Эта схема была экспериментально продемонстрирована с накачкой от перестраивае.мого лазера на центрах окраски [45]. По световоду длиной 10 км осуществлялась передача по двум канала.м со скоростью 45 Мбит/с. Каждый канал можно было усилить на 20 25 дБ при мощности накачки 14 мВт. Важно, что каждый канал можно было детектировать без ошибок (вероятность ошибки < 10 ), когда разность частот каналов превышала 140 МГц. В световоде, использовавшемся в данно.м эксперименте, Avg составляла 100 МГц, т. е. разность несущих частот соседних каналов, при которой еще не возникают перекрестные по.мехи,. может составлять лишь 1,5Луд.  [c.279]

Спектрально-ограниченный импульс синх-ронно-накачиваемого лазера на центрах окраски (Х=1,5 мкм, Tj/2 = 7 пс) вводился o,s[ в волоконный световод длиной L=320 м. Чо  [c.205]

Другие типы синхронно-накачиваемых лазеров. Распространенные и эффективные источники, работающие в ближнем ИК диапазоне, это лазеры на центрах окраски в щелочно-галлоидных кристаллах [33]. Типичным примером здесь может служить лазер на Ft центрах в кристалле KF, описанный в [34]. При накачке непрерывной последовательностью импульсов YAG Nd + лазера (<Р>=5 Вт, t = 100 пс, частота повторения — 100 МГц) он генерирует импульсы с длительностью 3—5 ПС в области перестройки от 1,24 до 1,45 мкм. Активный элемент помещается в вакуумную камеру и работает при температуре 70 К для окрашивания кристалла используется электронный пучок. В [35] аналогичный лазер создан на Ft центрах в кристалле Na l с диапазоном перестройки 1,35—1,75 мкм. Для улучшения спектральных характеристик в резонатор был помещен частотно-селективный элемент, выполненный в виде пластинки сапфира толщиной 4 мм, что позволило получить импульсы со спектральным качеством Avt=0,18. Авторами [36] реализована генерация в кристалле LiF при накачке цугами вто-  [c.256]

В последнее время созданы пикосекундные лазеры на центрах окраски в кристаллах Rb l Li и КС1 Li, генерирующие спектральноограниченные импульсы с длительностью 10 пс в среднем ИК диапазоне (2,74 мкм< <3,15 мкм) при синхронной накачке излучением аргонового лазера [37]. Эти источники, работающие с частотой повторения 82 МГц при средней мощности 30 мВт, существенно расширяют возможности для исследования нелинейно-оптических явлений в волоконных световодах, сверхбыстрых процессов в полупроводниковых структурах и молекулах.  [c.257]

Заметим, что к кристаллам этого класса помимо АИГ Nd принадлежат также щелочно- и щелочно-земельно-галлопдные кристаллы, являющиеся основой разрабатываемых в последнее время лазеров на центрах окраски.  [c.45]

В качестве последнего примера лазерных процессов в твердом теле упомянем лазеры на центрах окраски. Это лазеры на ионных кристаллах типа хлорида натрия (МаС1), бромида калия (КВг) и т. д. Положительно заряженные ионы натрия и отрицательно заряженные ионы хлора расположены регулярно, образуя кристаллическую решетку. Дефекты в такой решетке могут быть разных видов. Один из важных дефектов — отсутствие отрицательно заряженного иона хлора в узле решетки. Поскольку весь кристалл нейтрален, такой дефект ведет себя как положительный заряд (рис. 2.31). Подобный положительно заряженный центр может захватить  [c.62]


Смотреть страницы где упоминается термин Лазер на центрах окраски : [c.567]    [c.577]    [c.426]    [c.427]    [c.428]    [c.504]    [c.118]    [c.214]    [c.144]    [c.249]    [c.192]    [c.125]    [c.196]   
Лазерная светодинамика (1988) -- [ c.62 ]



ПОИСК



753 — Окраска

Лазер

Лазер азотный центрах окраски

ОГС-лазеров в ДГС-лазерах

Твердотельные лазеры на центрах окраски

Центры окраски

Центры окраски f-центр



© 2025 Mash-xxl.info Реклама на сайте