Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соотношение Прандтля, его обобщение

Это уравнение является обобщением соотношения Прандтля (30.18). При /2/2г0—>0 и, заменяя т] на у, на л , мы вернёмся к несжимаемой ЖИДКОСТИ и (36.11) перейдёт в точности в (30.18).  [c.629]

Коэффициент В принят равным 0,032. Это привело к согласованию с некоторыми экспериментальными данными [12]. Надо, однако, заметить, что в других опытах значение g было близко к единице [14]. В литературе также отмечается, что е может быть и больше единицы, что совершенно не вяжется с указанной схемой. Кроме того, следует иметь в виду, что схема Прандтля является идеализированной и построена по аналогии с молекулярной теорией, где на длине свободного пробега никакого внешнего воздействия молекула не испытывает. Длина перемешивания , полученная путем сравнения опытного распределения скорости с теоретическим, содержит в себе особенности процесса, которые не укладываются в модель Прандтля. В работе [4] рассматривается пространственная модель, которую можно считать обобщением модели Прандтля. Пусть из окрестности каждой точки М потока, рассматриваемой в системе координат, движущейся со скоростью осредненного потока в точке М, вылетают во всех направлениях с одинаковой вероятностью порции жидкости ( моля ). Характерный размер .моля d и средняя длина его пробега Л приближенно описываются соотношениями d = L и % = aL (р и а — постоянные безразмерные коэффициенты, L — масштаб турбулентности) и определяются полем скорости осредненного движения и положением рассматриваемой области потока относительно стенок канала. Модуль характерной скорости движения моля, вылетающего из окрестности  [c.92]


В соответствии с общепринятым методом подобия, по Прандтлю и Колмогорову, размерные уравнения (1) — (8) преобразуют в безразмерные обобщенные, заменяя переменные по соотношениям  [c.179]

Переходя к пределу при ->-0, можно убедиться, что соотношения сферического деформированного состояния переходят в соотношения плоского деформированного состояния. В приведенном решении конические поверхности переходят в цилиндрические, а само это решение переходит в обобщение решения Прандтля, данное Падай [2] для течения слоя между шероховатыми искривленными плитами в виде двух круговых концентрических цилиндров.  [c.311]

Рассматриваются линеаризованные соотношения теории плоской деформации анизотропно упрочняющегося материала [1-5] для случая малых деформаций, на основе которых дается обобщение решения Прандтля [6, 7] о сжатии полосы жесткими шероховатыми плитами.  [c.328]

Как уже отмечалось, конкретизация разработанных теоретических подходов к описанию многокомпонентных турбулентных сред проведена применительно к актуальным аэрономическим проблемам и моделированию процессов, в связи с которыми эти подходы получили свое дальнейшее развитие. Детально исследован диффузионный перенос в верхней атмосфере планеты на основе систематического использования обобщенных соотношений Стефана-Максвелла. Рассмотрена диффузионно-фотохимическая модель химического состава и температуры нейтральной атмосферы Земли в области верхней мезосферы - нижней термосферы и дана оценка величины усредненного по времени коэффициента турбулентной диффузии. Разработана методика полуэмпирического моделирования изотропных коэффициентов турбулентного обмена в стратифицированном в поле силы тяжести, многокомпонентном газовом потоке с поперечным сдвигом гидродинамической скорости. Получены универсальные алгебраические выра-л<ения для определения коэффициентов турбулентной вязкости и температуропроводности смеси в вертикальном направлении, зависящие от локальных значений кинетической энергии турбулентных пульсаций, динамических чисел Ричардсона, Колмогорова и турбулентного числа Прандтля, а также от внешнего  [c.314]

Трудность исследования турбулентных температурных пограничных слоев, следовательно, и теплопередачи в турбулентных течениях состоит в том, что коэффициенты обмена Ад внутри пограничного слоя зависят от расстояния от стенки. На достаточном расстоянии от стенки эти коэффициенты во много раз больше коэффициентов вязкости Lt и теплопроводности X, т. е. величин, характеризуюш,их молекулярный обмен поэтому величинами Lt и X вдали от стенки можно в обш,ем случае пренебречь по сравнению с коэффициентами Ах и Ад, Наоборот, в непосредственной близости от стенки, в так называемом ламинарном подслое, коэффициенты турбулентного обмена становятся равными нулю, так как здесь невозможно турбулентное пульсационное движение, следовательно, невозможен и турбулентный обмен. Поэтому на теплопередачу между течением и стенкой существенное влияние оказывают именно условия, имеющие место в ламинарном подслое и прежде всего коэффициенты молекулярного обмена [1 и X. Однако соотношение (23.16) при сделанных допущениях сохраняет свою применимость, несмотря на существование ламинарного подслоя, так как, согласно сказанному в 7 главы XII, при Рг = 1 распределение скоростей и распределение температуры тождественно совпадают также в ламинарном подслое. Но, в то время как в турбулентных пограничных слоях допущение, что Рг = 1, обычно вполне оправдано, в ламинарном подслое число Прандтля Рг может значительно отклоняться от единицы, например, у жидкостей (см. таблицу 12.1). В таких случаях соотношение (23.16) больше неприменимо. Обобщение аналогии Рейнольдса на число Прандтля Рг 1 было предложено многими авторами, в частности Л. Прандтлем [ ], Дж. И. Тэйлором Т. Карманом и и Р. Г. Дайсслером [ ], [ ], [ ].  [c.633]


Это и есть обобщение анлогии Рейнольдса, найденное Л. Прандтлем и Дж. И. Тэйлором независимо друг от друга. Для использования этого соотношения для целей расчета требуется еще надлежащим образом выбранное предположение о скорости на границе ламинарного подслоя ). В частном случае, когда Рг = 1, соотношение (23.18) переходит в соотношение (23.16).  [c.634]


Смотреть страницы где упоминается термин Соотношение Прандтля, его обобщение : [c.241]    [c.333]   
Теоретическая гидромеханика Часть2 Изд4 (1963) -- [ c.629 ]



ПОИСК



Обобщения

Прандтль

Прандтля



© 2025 Mash-xxl.info Реклама на сайте