Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия под действием нескольких окислителей

При питтинге поляризационная кривая нержавеющей стали изменяется (рис. 103). Если потенциал превышает некоторую критическую величину, именуемую потенциалом пробоя (/), то плотность тока начинает расти, а на кривой возникает серия пиков. Поскольку этот подъем означает начало питтинга, потенциал пробоя в этом случае называют потенциалом питтинга . Если потенциал после пробоя понизить, то снова достигается пассивация, но только при потенциале репассивации (2), который несколько ниже, чем потенциал питтинга. Аналогично развивается коррозия в зазорах или под поверхностными осадками. Достаточно высокий потенциал, при котором такая коррозия начинается, может быть достигнут, как в описанном случае, вследствие наличия вспомогательного электрода и приложенного напряжения или под действием окислителя, например кислорода в растворе. Потенциал пробоя не является какой-то постоянной величиной, а существенно зависит от таких условий, как концентрация хлорида, температура и метод измерения.  [c.112]


Для того чтобы использовать первое преимущество, обычно гак или иначе интенсифицируют коррозионный лроцесс. В этом случае особое внимание должно быть уделено тому, чтобы при подборе средств ускорения реального процесса не изменить принципиально его механизм. Например растворы соляной жис-лоты значительно увеличивают скорость коррозии легких сплавов по сравнению с атмосферными условиями, однако результаты испытаний в этих растворах не могут характеризовать поведения металла в практике, так как механизм коррозии в атмосферных условиях и в растворах кислот различный. Следовательно, для того чтобы интенсифицировать процесс коррозии в лабораторных условиях, необходимо знать его механизм и усиливать действие только тех факторов, которые не изменяют его принципиально. К числу важнейших внешних факторов, влияющих на коррозию металлов в электролитах, относят [1] 1) природу электролита, 2) концентрацию электролита, 3) проводимость электролита, 4) движение раствора, 5) концентрацию окислителей и кислорода, 6) концентрацию водородных ионов (pH), 7) температуру, 8) влажность и 9) размер частиц, контак-тируемых (С металлом. Рассмотрим несколько подробнее их влияние на коррозионные процессы, используя параллельно (для примера) данные [73] о влиянии температуры, концентрации кислорода, скорости движения жидкости и количества продуваемого воздуха на коррозию монель-металла в 5%-ном растворе серной кислоты (рис. И).  [c.60]

Рассмотреппые варианты относятся к биэлектродам, т.е. к коррозии одного М в присутствии одного Ох. Совместное действие нескольких окислителей будет рассмотрено в главе 4, а мы проанализируем сложные коррозионные системы, состоящие из нескольких М с одним Ох.  [c.24]

При анодной пассивации пигмент, обладающий окислительными свойствами или способностью образовывать трудно растворимые соединения с защищаемым металлом, создает условия для возникновения высокой плотности тока в порах защитных пленок. Благодаря этому, потенциал защищаемого металла сдвигается до такого положительного значения, при котором переход ионов металла из решетки в раствор становится невозможным и на электроде будут протекать лишь реакции образования фазовых или адсорбционных пассивных слоев. Такой тип защитной окисной пленки образуется в атмосфере на алюминии. Поскольку железные сплавы в обычных условиях не образуют защитных окисных пленок, то пассивация железа может иметь место лишь в случае включения в пленку покрытия ингибиторных пигментов. Для проявления ингибирующего действия, пигменты должны обладать либо основными свойствами, образуя мыла со связующим, как например, свинцовый сурик, образуюп в присутствии воды или кислорода дисперсные смеси, защищающие от коррозии, либо пигменты должны быть несколько растворимы в воде и действовать, как окислители.  [c.100]


Химическое обескислороживание воды реагентами как самостоятельный метод ее обработки применяется практически только Для связывания кислорода в подпиточной воде некоторых закрытых теплосетей. Как правило, это мероприятие используется лишь в качестве дополнения к термической деаэрации для полного связывания остатков растворенного в воде кислорода, й также при наличии в питательной воде нитритов и других нелетучих окислителей, неудаляемых термическими деаэраторами. Кроме того, дозирование в питательную воду реагентов-восстановителей несколько ослабляет коррозию металла питательного тракта под действием случайных сравнительно небольших проскоков кислорода, хотя полностью и не устраняет их отрицательное влияние. Весьма полезно также создание этими реагентами при накапливании их в котловой воде так называемого антикисло-родного буфера , поглощающего проникающие в котел следы кислорода и тем самым повышающего надежность защиты от коррозии котельного металла.  [c.395]

При защите металлов от коррозии наиболее эффективен метод, который тормозит основную контролирующую стадию данного электрохимического процесса, т. е. когда основной фактор защиты данного метода совпадает с контролирующим фактором данного коррозионного процесса. При одновременном применении нескольких методов защиты металла от коррозии, как привило, легче достичь более полной защиты, если все эти методы действуют преимущественно на основную контролирующую стадию электрохимического коррозионного процесса. Например, при уменьшении коррозии металла добавлением анодных ингибиторов (пассиваторов) усиление эффекта защиты достигается также введением катодных присадок в сплав или дополнительной анодной поляризацией, т. е. рядом методов, тормозящих анодный процесс. Наоборот, одновременное применение нескольких методов, действующих на различные контролирующие стадии электрохимической коррозии, будет, как правило, менее эффективным, а иногда и вредным. Например, если ограничение коррозии металла достигнуто методами, тормозящими анодный процесс (легирование стали хромом, добавкой окислителей или анодных ингибиторов в раствор), то нерационально одновременно применять методы, тормозящие катодный процесс (устранение катодных включений в сплаве, уменьше-  [c.48]

Потенциал 0,2 в. Такое значение фкор нержавеющие стали принимают в слабоокислительных средах или в присутствии небольших концентраций окислителя (например, в некоторых аэрированных средах). При этом потенциале рассматриваемые металлы располагаются по коррозионной стойкости в такой же ряд, как и при предыдущем потенциале. Хотелось бы только отметить, что при 0,2 в несколько возрастает скорость растворения молибдена и очень сильно — никеля (в 1500 раз). Последнее, очевидно, обусловлено тем, что выбранный потенциал находится в области фкр никеля и, следовательно, максимальных скоростей его растворения. Следует-обратить внимание, что наиболее типичная потен-циостатическая кривая никеля в рассматриваемой области в растворах H2SO4 имеет два максимума тока растворения. Активационный участок между первым и вторым максимумом, по мнению некоторых авторов [75, 76], обусловлен активирующим действием сульфат-ионов, которое затрудняет посадку пассивирующего кислорода. В определенных условиях при потенциалах этого активационного участка может развиваться питтинговая коррозия никеля.  [c.28]


Смотреть страницы где упоминается термин Коррозия под действием нескольких окислителей : [c.323]    [c.71]    [c.196]    [c.249]   
Теоретические основы коррозии металлов (1973) -- [ c.173 ]



ПОИСК



Коррозия окислителя



© 2025 Mash-xxl.info Реклама на сайте