Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ аэроупругости нелинейны

Анализ аэроупругости нелинейный  [c.1022]

Исследование устойчивости совместных махового движения и качания представляет собой сложную задачу динамики. Если необходимы точные численные результаты, то для ее решения часто требуется более совершенная модель, чем описанная выше. Конструктивная и инерционная взаимосвязи изгибных колебаний лопасти в плоскостях взмаха и вращения —важный фактор устойчивости бесшарнирных винтов. Даже слабое влияние махового движения на качание сильно увеличивает аэродинамическое демпфирование и является стабилизирующим. Обычно в динамике бесшарнирного винта необходимо учитывать и кручение лопасти. Выше показано, что компенсаторы взмаха и качания играют важную роль в динамике лопасти. Для шарнирного винта эти компенсаторы определяются конструкцией втулки и системы управления, а для бесшарнирного они зависят от изгибающих и крутящих нагрузок, действующих на лопасть. Таким образом, для точного анализа аэроупругой устойчивости несущего винта нужна полная модель движения лопасти с учетом изгиба в двух плоскостях и кручения. Вывод общих нелинейных уравнений движения для такой модели все еще является предметом исследований. Выше рассмотрен только режим висе-ния, но особенности аэродинамических нагрузок при полете вперед также сильно влияют на устойчивость совместного движения.  [c.608]


Нелинейный анализ аэроупругости вертолета обычно состоит из следующей последовательности вычислений. Исходными данными являются описание несущего винта вертолета и режима полета. Выходные параметры зависят от рассматриваемой задачи (характеристики несущего винта, нагрузки на лопасть, возмущенное движение вертолета и т. д.). На каждом шаге анализа вычисляются геометрия вихревой системы, индуктивные скорости и аэродинамические силы на несущем винте и фюзеляже с использованием простой или сложной модели каждого элемента в соответствии с характером задачи. После интегрирования уравнений движения для определения реакции несущего винта и фюзеляжа дается приращение времени и вычисления повторяются. Итерационный процесс продолжается до тех пор, пока не будет получено периодическое решение для установив-щегося режима полета или определен соответствующий переходный процесс. Такой прямой подход в случае сложных моделей требует огромного количества вычислений. Поэтому большое внимание уделяется разработкам более эффективных вариантов указанной процедуры в соответствии с исследуемой проблемой и имеющимися вычислительными возможностями.  [c.690]

Одним из элементов анализа аэроупругости вертолета, который еще не рассматривался, является численное интегрирование уравнений движения. Дифференциальные уравнения, подлежащие решению, могут быть записаны в форме Р==/(Р, Р, iti), где р представляет степени свободы системы, а ij) — безразмерное время. Нескольким степеням свободы соответствует система уравнений. В случае линейных уравнений и небольшого количества степеней свободы возможно аналитическое решение задачи. В анализе аэроупругости часто присутствуют нелинейные аэродинамические, упругие и инерционные силы, что делает необходимым численное решение. Если заданы значения р и р при ij) = ijJrt (из чего может быть найдена производная р = /), то задача заключается в интегрировании уравнений с временным шагом Aij) для определения значений р и р при = il)n + А Ф-  [c.693]


Смотреть страницы где упоминается термин Анализ аэроупругости нелинейны : [c.690]    [c.55]    [c.23]   
Теория вертолета (1983) -- [ c.690 ]



ПОИСК



Анализ аэроупругости

Анализ нелинейный

Аэроупругость



© 2025 Mash-xxl.info Реклама на сайте