Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства тканей на основе углеродных волокон

Листовые материалы, предназначенные для холодной штамповки, представляют собой пропитанные термопластичными смолами маты из коротких волокон или ткани из непрерывных волокон. Такие материалы аналогичны листовым формовочным материалам на основе коротких волокон, пропитанных термореактивной смолой, но обладают преимуществами по технологическим условиям формования, в частности длительность процесса формования меньше. В качестве примера можно привести наполненные стекловолокнами листовые материалы для холодной штамповки марок AZDEL, STX и т. д. Такой тип материалов на основе углеродных волокон пока находится в стадии разработки фирмами Торэ [21], иСС [22] и др. С точки зрения технологичности лучше использовать короткие волокна, однако материалы на основе тканей из непрерывных волокон Ьбладают лучшими механическими свойствами. В табл. 3. 13 приведены характеристики листовых материалов для холодной штамповки, полученных с использованием 8-ремизной ткани марки 6341 на основе углеродных волокон Торэка .  [c.83]


Технология послойной укладки сухих нелипких препрегов (на основе кремнийорганических и полиимидных смол) находит ограниченное применение и не подходит для формования опорных конструкций. Как правило, для армирования используется стекловолокно и лишь для аэрокосмических летательных аппара тов — углеродные волокна. Появление специальных тканей еде лало возможным применение сшитых оплеток, скоб или зажимов Обычно укладываемые листы размещают так, чтобы была возмож ность обрезки застежек после отверждения слоистого пластика Иногда препреги укладывают поверх позитивной формы и нагру жают их края, чтобы плотно натянуть слои на формующую по верхность. Применение препрегов с плохими драпировочными свойствами ограничивается изделиями слегка вогнутой формы и одинарной кривизны. Очень часто успешная послойная укладка зависит от мастерства рабочего.  [c.106]

Как нн удивительно, в литературе отсутствуют какие-либо сообщения о систематических исследованиях явлений переноса в асбопластиках, несмотря на их широкое применение. Изучение коэффициентов теплопроводности однонаправленных композиционных материалов на основе антофиллита и эпоксидного связующего было предпринято НИИ взрывчатых веществ [24] в связи с их применением в качестве материалов конструкционного назначения в химическом машиностроении и в качестве высокотемпературных теплоизоляционных материалов. Результаты этого исследования, приведенные на рис. 7.15, являются первым шагом в заполнении пробела в наших знаниях в этой области. Было исследовано влияние объемной доли волокна и температуры на k r-Для установления корреляции между экспериментальными и расчетными данными были использованы уравнения (7.24) и (7.25), которые, как отмечалось выше, оказались вполне приемлемыми для установления такой корреляции для коэффициентов теплопроводности в поперечном направлении композиционных материалов на основе углеродных волокон. Кроме того, на рис. 7.15 приведены некоторые дополнительные данные, относящиеся к композиционным материалам на основе тканых матов и матов с хаотически расположенными в плоскости хризотиловыми волокнами, и некоторые показатели свойств композиционных материалов на основе эпоксидной смолы. Имеется некоторое различие в свойствах материалов на основе хризотила и антофиллита. Для облегчения сравнения свойств композиционных материалов данные на рис. 7.15 отнесены к общепринятой стандартной температуре 35 °С. Экспериментально установлено [24], что для композиционных материалов на основе антофиллита и эпоксидной смолы характерны низкие значения температурного коэффициента теплопроводности. Его значение аналогично значению температурного коэффициента эпоксидной матрицы при всех исследованных объемных долях волокна и приблизительно равно 0,4-10 Вт/(м-К ).  [c.314]


При получении промышленных карбоволокнитов используют высокомодульные волокна в виде крученых жгутов, состоящих из различного числа элементарных волокон диаметром 5—10 мкм и тканой ленты кордной текстуры с редким утком. Наполнитель в виде тканой ленты более технологичен при переработке, однвко наличие слабых уточных нитей уменьшает степень наполнения карбоволокнитов до 45—50% (об.) по сравнению с 55—62% (об.), характерными для материалов на основе жгутов, и, как следствие этого, некоторые прочностные И упругие характеристики карбоволокнитов уменьшаются. В табл. 3 приведены основные характеристики механических свойств различных эпоксифеноль-ных карбоволокнитов КМУ-1л на основе углеродной ленты КМУ-1у на основе углеродного жгута КМУ-1в—-на основе того же жгута, вискеризованного нитевидными кристаллами. Использование ленты и жгутов, состоящих из более прочных моноволокон, обеспечивает повышение прочности карбоволокнитов при растяжении и-изгибе.  [c.592]

Композиционным материалам с однонаправленным и перекрестным расположением волокон, когда необходимая толщина изделия создается последовательной укладкой армирующих слоев,. присущи низкая сдвиговая и низкая трансверсальная прочность. Модуль упругости и предел прочности при межслойном сдвиге и поперечном растяжении— сжатии в таких композициях более чем на порядок отличаются от модуля Юнга и прочности в направлении армирования. В ряде случаев эта особенность может препятствовать реализации высоких прочности и жесткости композиций в конструкциях. Повышение прочности сцепления матриц с волокнами путем их поверхностной обработки способствует увеличению прочности материала при сдвиге и сжатии, но не является эффективным средством повышения упругих характеристик при этих видах нагружения. Существенное возрастание жесткости и прочности при межслойном сдвиге, а также сопротивления материала поперечному отрыву достигается созданием в нем поперечных связей. Материалы с пространственно сшитой арматурой (многослойные ткани), используют при создании стеклопластиков и органоволокнитов. Основной недостаток их — значительное искривление волокон основы, что приводит к резкому снижению характеристик механических свойств композиций в этом направлении. Для высокомодульных углеродных и борных волокон наиболее приемлема схема трехмерного армирования изотропных текстильных материалов ИТМ, при которой волокна сохраняют прямолинейность. В этом случае в разных направлениях могут быть уложены различные волокна, благодаря чему образуется многокомпонентный материал.  [c.591]


Смотреть страницы где упоминается термин Свойства тканей на основе углеродных волокон : [c.29]    [c.64]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.571 ]



ПОИСК



Волокна

Волокна свойства

Волокна углеродные

Волокниты Свойства

Основа ткани

Свойства углеродных волокон

Ткани

Ткани Свойства

Ткани углеродные



© 2025 Mash-xxl.info Реклама на сайте