Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критерии вязкости разрушения деформационные

Критерии вязкости разрушения деформационные 4, 19, 29  [c.251]

Действительно, в соответствии с критерием Мизеса [1]в условиях плоской деформации напряжения в пластической зоне повышаются примерно в 3 раза. В то же время при плоском напряженном состоянии напряжения возрастают всего лишь в 1,15 раза. Из рис. 5.5 видно, почему при плоской деформации, когда реальный предел текучести в зоне процесса практически утраивается, разрушение происходит при значительно меньших значениях деформации, чем при плосконапряженном состоянии. Можно предположить, что если в условиях плоской деформации напряжения в зоне процесса в самом деле повышаются втрое, то тогда можно допустить, что в этом случае разрушение определяется только деформацией и можно попытаться определять вязкость разрушения только деформационным критерием.  [c.200]


Как показали экспериментальные исследования, ни силовые, ни деформационные критерии не могут быть использованы для оценки условий перехода к нестабильному развитию трещин пластичных конструкционных материалов. Характеристики вязкости разрушения, полученные для одних и тех же материалов при испытании образцов различных размеров и различной формы могут существенно различаться (см. табл. 5.3) и в связи с этим расчет предельного состояния деталей по характеристикам, найденным на лабораторных образцах, становится необоснованным. Это вызвало необходимость поиска других критериев разрушения материалов с трещинами, которые были бы инвариантными к условиям испытаний.  [c.315]

Таким образом, методы прогнозирования ресурса должны базироваться на таких критериях, которые бы учитывали временные процессы накопления повреждений в металле. В качестве параметров надежности должны быть показатели долговечности, например, время до разрушения или число циклов нагружения до разрушения. Существующие нормативные материалы по расчету прочности не позволяют получать такие важные характеристики прочностной надежности. Например, в процессе эксплуатации аппаратов вследствие деформационного старения происходит некоторое повышение прочностных свойств, т.е. временного сопротивления и предела текучести металла. Для конструктивных элементов оборудования из низкоуглеродистых и низколегированных сталей, работающих при нормальных условиях эксплуатации, значение предела текучести может возрастать до 20%. Заметим, что временное сопротивление Gb является расчетной характеристикой при выполнении прочностных расчетов по действующим НТД. Из этого следует парадоксальный вывод о том, что с увеличением срока службы аппарата можно увеличивать рабочее давление, если производить оценку прочности по действующим отраслевым нормам и правилам. Другими словами, с увеличением срока службы аппарата его надежность должна увеличиваться. В действительности, наряду с увеличением прочностных свойств происходит повышение отношения предела текучести к пределу прочности К в, снижение пластичности и вязкости, которые определяют ресурс длительной прочно-  [c.366]

Здесь предполагается, что предельное критическое напряжение Ой зависит от концентрации водорода С в данном микрообъеме [381]. Расчет напряженно-деформированного состояния в окрестности вершины трещины [368] (рис. 41.3) показывает, что при л б эффективное напряжение Oef определяется практически растягивающим напряжением о , имеющим максимум при х = — Хш 26, а при а ss б в зависимости от значения параметра а в соответствии с (41.20) доминирующим фактором для напряжения Oef может оказаться интенсивность деформаций ер (см. рис. 41.5, а). Это, в частности, означает, что в отсутствие водорода, когда Ос можно считать константой, критическое условие (41.20) может быть выполнено при достижении в окрестности вершины трещины предельных деформаций е, или напряжений Оу. В связи со сказанным известные микромеханическпе критерии вязкости разрушения [253], основанные на понятиях критической деформации или критического напряжения, можно считать предельными случаями более общего критерия, получающегося из условия (41.20). Однако, если в отсутствие водорода соответствие какой-либо микромеханпческой модели вязкости разрушения (деформационной или силовой) данному материалу достаточно стабильно и определяется преимущественно свойствами самого сплава, то при водородном охрупчивании реализация этого соответствия существенно зависит от распределения водорода вблизи вершины трещины и его влияния на значение Ос.  [c.334]


В статье дан краткий анализ результатов исследования зарождения и развития усталостных трещин в металлах при многоцикловом нагружении, полученных в Институте проблем прочности АН УССР. Показано, что об интенсивности накопления усталостного повреждения па стадии зарождения усталостной трещины можно судить по величине неупругой циклической деформации. Приведены деформационные и энергетические критерии зарождения трещин рассмотрены закономерности развития усталостных трещин п обоснована целесообразность использования в расчетах характеристик вязкости разрушения при циклическом нагружении.  [c.420]

В этих случаях определяется поле упругош1астических деформаций и используются коэффициенты интенсивности деформаций [5]. Деформационные критерии и параметры нелинейной механики разрушения полагаются в основу расчетов на прочность на стадии проектирования. В нормативных документах [7, 8] описаны методы определения характеристик вязкости разрушения (трещиностойкости) при статическом и динамическом нагружении.  [c.126]

Значение ударной ВЯЗКОСТИ на образцах с полукруглым надрезом при —90° С превосходит 3 кГ м1см , а условный порог по критерию 50% вязкой составляющей в изломе находится в области 0°С. Нижняя граница критического интервала хрупкости стали 16Г2АФ лежит при (—90) (—110° С), что значительно ниже, чем у обычных низколегиро ванных сталей. После деформационного старения условные пороги хладноломкости смещаются в сторону положительных температур примерно на 40—70 град, что не больше, чем у обычных низколегированных сталей. Высокое сопротивление хрупкому разрушению стали 16Г2АФ подтверждается испытаниями на растяжение крупномерных образцов с надреза-  [c.148]


Смотреть страницы где упоминается термин Критерии вязкости разрушения деформационные : [c.128]    [c.147]   
Трещиностойкость металлов при циклическом нагружении (1987) -- [ c.4 , c.19 , c.29 ]



ПОИСК



Вязкость разрушения

Деформационные швы

Критерии вязкости разрушения деформационные силовые

Критерии вязкости разрушения деформационные энергетические

Критерий деформационный

Критерий разрушения

Разрушения деформационные



© 2025 Mash-xxl.info Реклама на сайте