Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бетон — Коэффициент Пуассона

Отношение модуля Юнга стали к модулю Юнга бетона =15. Коэффициент Пуассона для бетона = 0,4. Коэффициент Пуассона для стали =0,3.  [c.168]

Механические характеристики материалов (т. е. величины, характеризующие их прочность, пластичность и т. д., а также модуль упругости и коэффициент Пуассона) определяются путем испытаний специальных образцов, изготовленных из исследуемого материала. Наиболее распространенными являются статические испытания на растяжение. Для некоторых строительных материалов (камня, цемента, бетона и т. д.) основными являются испытания на сжатие. Испытания проводятся на специальных машинах различных типов.  [c.33]


Обнаружено, что ползучесть усиливается при уменьшении вл ал<ности окружающего воздуха. По-особому в бетонах выглядит картина изменения коэффициента Пуассона с увеличением нагрузки и, следовательно, с увеличением доли пластических деформаций. Чем больше пластическая деформация, тем меньше коэффициент Пуассона, и в пределе он стремится к нулю, Напомним, что в стали и других металлах при полном развитии пластических деформаций коэффициент Пуассона приобретает значение 0,5.  [c.366]

Составные конструкции. Если конструкция состоит из двух или нескольких элементов, изготовленных из разных материалов с модулями упругости и коэффициентами Пуассона Е, Е , Е , и V, Vi, V2,. .., то должны появляться дополнительные безразмерные параметры EJE, E IE,. .. и v, Vi, V2, которые должны быть одинаковы для модели и натуры. Влияние коэффициента Пуассона на напряжения часто оказывается незначительным, и тогда его можно не учитывать. Например, модель можно изготовить из материалов с соотношением модулей, как у стали и бетона, но с отношением коэффициентов Пуассона иным, чем у стали и бетона.  [c.461]

Данных об изменении коэффициента Пуассона и коэффициента линейного расширения бетона накоплено очень мало, хотя ряд экспериментов [2, 18] показывает.  [c.20]

Бетон — Коэффициент Пуассона 22  [c.538]

В качестве примера рассмотрим влияние жесткости стыкового соединения плит размером в плане 7 х 7 м, толщиной 24 см, с модулем упругости бетона 3,3 10 МПа, коэффициентом Пуассона 0,15, лежащих на упругом основании с коэффициентом постели 63 МН/м . Величину нагрузки, прикладываемой последовательно к различным участкам плиты (два края, угол, центр плиты), примем равной 120 кН с распределением по площади 0,5 х 0,5 м.  [c.222]

Е — модуль упругости бетона h — толщина покрытия и — коэффициент Пуассона для бетона С — коэффициент постели основания  [c.415]

Поскольку представляется нереальным предположение, что какие-либо материалы могут уменьшать свой объем при растяжении, из выражения (1.7) можно сделать вывод, что коэффициент Пуассона V должен быть всегда меньшим 0,5. Резина и парафин представляют собой два вида материалов, которые практически не меняют объема при растяжении, поэтому для указанных материалов коэффициент л> приближается к своему предельному значению 0,5. С другой стороны, пробка—материал, для которого л практически равен нулю, в то время как для бетона примерна равен 0,1.  [c.22]

Механические характеристики материалов (т. е. величины, характеризующие их прочность, пластичность и т. д., а также модуль продольной упругости и коэффициент Пуассона) опреде ляются путем испытаний специальных образцов, изготовленных из исследуемого материала. Наиболее распространенными являются статические испытания на растяжение. Для некоторых строительных материалов — камня, цемента, бетона и т. д.— основными являются испытания на сжатие. Испытания проводятся на специальных машинах различных типов. Сведения об устройстве этих машин и методике испытаний, а также о применяемых при этом измерительных приборах приводятся в специальных руководствах.  [c.31]


Бетонный цилиндр диаметром =20 см находится в абсолютно твердой плите и подвергается осевому сжатию силой Р=31,4 Т. Определить главные напряжения в цилиндре. Коэффициент Пуассона —0,2.  [c.93]

Бетонный кубик (рис. 2.51) со зазоров вложен в гнездо стальной плиты Р = 250 кН (рис. 2.51). Определить напряжения, возникающие по граням кубика, считая плиту абсолютно жесткой. Коэффициент Пуассона (и = 0,15  [c.135]

Для твердых материалов — металлов, камня, бетона— коэффициент Пуассона составляет 1/4—1/3.  [c.168]

Пусть двухслойное основание изготовлено из стареющих материалов, характеризуемых постоянством и равенством коэффициентов Пуассона упругомгновенной деформации и деформации ползучести (например, из разных марок бетона), и необходимо исследовать контактную задачу, описываемую интегральным уравнением (1.31) при дополнительных условиях (1.32), (1.33). Предположим, что конструкционная неоднородность проявляется только от слоя к слою, т.е. при изготовлении основания использованы только два стареющих материала. Тогда уравнение (1.31) примет вид  [c.69]

Рассмотрим контактную задачу для основания, изготовленного из одного материала-бетона, и исследуем влияние неоднородного старения на контактные характеристики. Будем считать, что штамп плоский (p(i ) = 0), а вдавливающая сила P t) приложена в центре штампа, т.е. M t) = О (четный вариант задачи). Поскольку изменение модуля упругомгновенной деформации бетона Е в процессе старения несущественно, будем полагать его постоянным, а значения коэффициента Пуассона брать в пределах от 0.1 до 0.3 [16, 117]. Опуская звездочку в обозначениях, запишем основные безразмерные функции и параметры в виде (см. (3.4) и далее)  [c.78]

Рассмотрим двухслойное основание (см. п.1.1), изготовленное из бетона с модулем упругомгновенной деформации Е, коэффициентом Пуассона и, мерой ползучести  [c.168]

Найти давление на стенки обоймы и напряжения в бетоне. Коэффициент Пуассона для бетона [1 = 0,18.  [c.138]

Железобетонные плиты. Пусть Eg—модуль Юнга для стали, Е . — для бетона, Чс — коэффициент Пуассона для бетоиа, п — Е /Ес- Исходя из упругих  [c.407]

Бетонный кубик с ребром а=10 см сжимается на прессе силой Я=1000 кг. Вычислить напряжения в кубике и величины абсолютного упругого изменения длин его ребер, считая модуль упругости бетона =2-10 кГ1см , а коэффициент Пуассона при сжатии х=0,15.  [c.11]

Пример 13.2. Длинная бетонная труба, имеющая внутренний диаметр = = 1 м, заложена на глубине Н — 35 м от поверхности воды. Считая давление воды равномерно распределенным по поверхности трубы, определить необходимую толщину ее стенок по второй теории прочности. Допускаемое напряжение для бетона на сжатие 15 kFJ m , коэффициент Пуассона ft = 0,16.  [c.353]

При строительстве защитных оболочек АЭС могут применяться ЭП в виде цилиндрического блока из электротехнического фарфора или другого материала диаметром 60—80 см, забетонированного в конструкции. Оболочка с таким блоком также рассчитана в соответствии с положениями работы [17]. Исследовались максимальные напряжения в точках А, В, С (рис. 1.20) у сплошной проходки диаметром 60 см с различными значениями модуля упругости Е и коэффициента Пуассона v. Установлено, что изменение Е существенно влияет на напряжения а, и 00 только при небольших его значениях (рис. 1.20, б). Максимального значения напря-жение of достигает при =5-105 мПа, а изменение v практически не сказывается на значениях напряжений. Радиальные усилия в точке А интенсивно возрастают при увеличении от О до 60 000 МПа, при увеличении Е выше 300 000 МПа усилия в бетоне не меняются.  [c.35]

Белый свет в поляризаторе 580 Беляева гипотеза строения 282 Бетон — Ксвффициент понижения допускаемого напряжения — Зависимость от гибкости 335 — Коэффициент Пуассона 20  [c.622]

При разгрузке и последующем дофужении сжатый бетон деформируется линейно с начальным модулем упругости и коэффициентом Пуассона, вплоть до достижения той точки на поверхности нагружения (пластичности), с которой началась разфузка.  [c.82]

Бетонный кубик ЮОхЮОхЮОлж сжимается со всех сторон равными силами Р = 40 кн (- АТ). Определить главные напряжения, относительные деформации и изменение объема кубика после деформации. Модуль упругости бетона = 2-10 Мн/ж ( 2-10 кГ/ш ), коэффициент Пуассона [i = 0,2. Считать, что нааряженное состояние однородно.  [c.70]


Объектом исследований являлась реальная конструкция, представляющая собой двухслойную плиту. Материал верхнего и нижнего слоев — бетон марки 350. Размеры плиты в плане — 700x700 см. Толщина верхнего слоя — 28 см, нижнего — 24 см. Между ними расположена обжимаемая прослойка толщиной 0,3 см, состоящая из нескольких слоев битуминизированной бумаги. Лабораторные испытания образцов материала слоев позволили определить следующие физико-механические характеристики для бетона — модуль упругости Е = = = 3,1 10" МПа, коэффициент Пуассона i i = = 0,167 для битуминизированной бумаги — Е2 = 2 МПа, ту2 = 0,35.  [c.209]

Расчеты выполним для двухслойных цементобетонных покрытий (характеристики несущих слоев модуль упругости бетона Е = 3,3 10 МПа, коэффициент Пуассона и = 0,15) с разделительной прослойкой различной жесткости (10, 10 , 10 , 10 , 10 и 10 МН/м ) на упругом основании (коэффициент постели основания С принимаем равным 20 и 150 МН/м ) под воздействием одноколесной нагрузки 100 кН с давлением в шине 1,25 МПа. Значения толщины цементобетонных слоев назначаем такими, чтобы суммарная жесткость несущих слоев D оставалась в пределах одного расчета постоянной и составляла для рассматриваемых вариантов 15,4 МН-м /м, 45,0 МН-м /м и 151,9 МН-м /м. Такие значения жесткостей несущих слоев охватывают практически весь возможный диапазон конструкций двухслойных покрытий.  [c.254]

Ползучесть некоторых распростралеьшых конструкционных материалов, в том числе бетона, хорошо описывается уравнениями состояния (1.28), (1.29) при условии независимости от возраста и равенства коэффициентов Пуассона упругомгновенной деформации и деформации ползучести [16,117], т.е. 1/1( — т (х),х) = l 2 t — т - (х),х) = 1 (х), тогда с учетом соотношений (1.16), (1.19), (1.20)  [c.21]

Модуль упругости бетона Е = (0,146 -ь -0,27) 10 МПа и предел прочности на сжатие = 48 - 60 МПа на порядок меньше, чем у стали, поэтому одинаковой жесткости и прочности можно достичь увеличением толщины стенок. Однако более низкий удельный вес бетона (на треть меньший, чем у стали и чугуна) незначительно изменяет массу конструкции. При напряжениях сжатия, превышающих (0,3 - 0,5)Ос бетон течет, что приводит к изменению формы. Поэтому расчетные напряжения сжатия ограничивают значениями (0,25 - 0,30)а(.. Прочность при растяжении минимум на порядок ниже, чем при сжатии. Низкая теплопроводность делает бетон мало чувствительным к колебаниям температуры. Коэффициент температурного расширения а = 7 10 - 14 10 1/град и зависит от наполнителя. В среднем а = = 10 10 61/град, что близко к значениям а для чугуна. Значение коэффициента Пуассона для бетона д. = 0,167. Малая усадка бетона (коэффициент линейной усадки в среднем равен 0,03 %) обеспечивает сохранение формы и точность взаимного расположения заформованных металлических деталей при твердении.  [c.385]

Решение. Пусть р означает продольное, г д — поперечное сжимакодее давле-ние, ф — внутренний диаметр и Л — толщина трубы, Е — модуль упругости стали, Сб. — модуль упругости и коэффициент Пуассона для бетона. Расширение бетона в поперечном направлении на основании уравнений (43) будет  [c.66]


Смотреть страницы где упоминается термин Бетон — Коэффициент Пуассона : [c.132]    [c.36]    [c.82]    [c.69]    [c.102]    [c.114]    [c.182]    [c.227]    [c.622]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.22 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.22 ]



ПОИСК



Бетон

Коэффициент Пуассона

Пуассон



© 2025 Mash-xxl.info Реклама на сайте